53 research outputs found

    Propagule pressure: A null model for biological invasions.

    Get PDF
    I begin with a review of recent attempts to identify characteristics of species \u27invasiveness\u27 (i.e., the ability to invade) and habitat \u27invasibility\u27 (i.e., the susceptibility to invasion), and find little support for an emerging consensus on species- or habitat-specific characteristics. Moreover, I find that few studies consider hypotheses based on the concept of \u27propagule pressure\u27 (i.e., introduction effort), despite its potential as a confounding factor. Another barrier to generalizations may be the divergent use of operationally important terms like \u27invasive\u27, \u27naturalized\u27, or \u27nuisance\u27. I therefore introduce a framework that conceptualizes biological invasions as a series of obligatory stages. This stage-based framework can aid in identifying characteristics that are confounded by \u27propagule biases\u27 (i.e., non-random variation in introduction effort), and can serve as common ground for an operational lexicon. I use this framework to investigate the enemy release hypothesis (ERH), which relates invasion success of a host species with the number of co-occurring enemies. (Abstract shortened by UMI.)Dept. of Biological Sciences. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2003 .C655. Source: Masters Abstracts International, Volume: 42-05, page: 1610. Advisers: Hugh J. MacIsaac; Daniel D. Heath. Thesis (M.Sc.)--University of Windsor (Canada), 2003

    Common Garden Comparisons of Native and Introduced Plant Populations: Latitudinal Clines Can Obscure Evolutionary Inferences

    Get PDF
    Common garden studies are increasingly used to identify differences in phenotypic traits between native and introduced genotypes, often ignoring sources of among-population variation within each range. We re-analyzed data from 32 common garden studies of 28 plant species that tested for rapid evolution associated with biological invasion. Our goals were: (i) to identify patterns of phenotypic trait variation among populations within native and introduced ranges, and (ii) to explore the consequences of this variation for how differences between the ranges are interpreted. We combined life history and physiologic traits into a single principal component (PCALL) and also compared subsets of traits related to size, reproduction, and defense (PCSIZE, PCREP, and PCDEF, respectively). On average, introduced populations exhibited increased growth and reproduction compared to native conspecifics when latitude was not included in statistical models. However, significant correlations between PC-scores and latitude were detected in both the native and introduced ranges, indicating population differentiation along latitudinal gradients. When latitude was explicitly incorporated into statistical models as a covariate, it reduced the magnitude and reversed the direction of the effect for PCALL and PCSIZE. These results indicate that unrecognized geographic clines in phenotypic traits can confound inferences about the causes of evolutionary change in invasive plants

    Propagule Pressure: A Null Model for Biological Invasions

    Full text link
    null model, propagule pressure Invasion ecology has been criticised for its lack of general principles. To explore this criticism, we con-ducted a meta-analysis that examined characteristics of invasiveness (i.e. the ability of species to establish in, spread to, or become abundant in novel communities) and invasibility (i.e. the susceptibility of habitats to the establishment or proliferation of invaders). There were few consistencies among invasiveness char-acteristics (3 of 13): established and abundant invaders generally occupy similar habitats as native species, while abundant species tend to be less affected by enemies; germination success and reproductive output were significantly positively associated with invasiveness when results from both stages (establishment/ spread and abundance/impact) were combined. Two of six invasibility characteristics were also significant: communities experiencing more disturbance and with higher resource availability sustained greater establishment and proliferation of invaders. We also found that even though ‘propagule pressure ’ was considered in only 29 % of studies, it was a significant predictor of both invasiveness and invasibility (55 of 64 total cases). Given that nonindigenous species are likely introduced non-randomly, we contend that ‘propagule biases ’ may confound current paradigms in invasion ecology. Examples of patterns that could be confounded by propagule biases include characteristics of good invaders and susceptible habitats, release from enemies, evolution of ‘invasiveness’, and invasional meltdown. We conclude that propagule pressure should serve as the basis of a null model for studies of biological invasions when inferring process from patterns of invasion

    ColauttiBarrett

    No full text
    Data (.csv) and analysis (.R) files. Can be run in order (S1-S8) or see Science online supplementary materials for more detail

    Evolution of Local Adaptation During Plant Invasion: Purple Loosestrife (Lythrum salicaria – Lythraceae) in Eastern North America

    No full text
    Biological invasions provide opportunities to study evolutionary processes occurring during contemporary time scales. Here, I combine a literature review of common garden studies of invasive plant species, with field and glasshouse experiments on populations of the outcrossing, perennial, wetland invader Lythrum salicaria (purple loosestrife - Lythraceae), to investigate the evolutionary genetics of local adaptation in reproductive and life-history traits. A review of 32 common garden studies of 28 introduced species identified previously unrecognized latitudinal clines in phenotypic traits in both native and introduced populations. To obtain direct evidence for clinal variation and local adaptation, I investigated populations of L. salicaria sampled along a latitudinal gradient of growing season length in eastern North America. Controlled pollinations of plants from 12 populations provided no evidence for the breakdown of self-incompatibility to self-compatibility towards the northern range limit. However, a quantitative genetic experiment involving 20 populations revealed latitudinal clines in population mean, variance and skew for days to flower and vegetative size. Broad-sense estimates of genetic variance were significant for most traits; however, strong inter-correlations among traits suggested that fitness trade-offs have constrained population divergence. The observed clines supported a model of selection for early flowering in northern populations constrained by a trade-off between age and size at flowering. A comparison of variance-covariance matrices of family and population means (G and D, respectively) of life-history traits demonstrated that populations have evolved in response to selection under genetic constraints, rather than through neutral processes. A reciprocal transplant experiment involving six populations and three common gardens spanning the latitudinal range provided direct evidence for local adaptation in flowering phenology. Populations maintained the same rank-order for time to flowering and vegetative size at each site, and southern populations had the highest fecundity at the southern site but the lowest at the northern site. Finally, a phenotypic selection analysis in each common garden involving 61 F2 families of crosses between a northern × southern populations confirmed that selection favours earlier flowering in northern populations. These results demonstrate that natural selection on reproductive phenology has accompanied the invasive spread of L. salicaria in eastern N. America.Ph

    Data from: Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation

    No full text
    Biological invasions are ‘natural’ experiments that can improve our understanding of contemporary evolution. We evaluate evidence for population differentiation, natural selection and adaptive evolution of invading plants and animals at two nested spatial scales: (i) among introduced populations (ii) between native and introduced genotypes. Evolution during invasion is frequently inferred, but rarely confirmed as adaptive. In common garden studies, quantitative trait differentiation is only marginally lower (~3.5%) among introduced relative to native populations, despite genetic bottlenecks and shorter timescales (i.e. millennia vs. decades). However, differentiation between genotypes from the native vs. introduced range is less clear and confounded by nonrandom geographic sampling; simulations suggest this causes a high false-positive discovery rate (>50%) in geographically structured populations. Selection differentials (¦s¦) are stronger in introduced than in native species, although selection gradients (¦β¦) are not, consistent with introduced species experiencing weaker genetic constraints. This could facilitate rapid adaptation, but evidence is limited. For example, rapid phenotypic evolution often manifests as geographical clines, but simulations demonstrate that nonadaptive trait clines can evolve frequently during colonization (~two-thirds of simulations). Additionally, QST-FST studies may often misrepresent the strength and form of natural selection acting during invasion. Instead, classic approaches in evolutionary ecology (e.g. selection analysis, reciprocal transplant, artificial selection) are necessary to determine the frequency of adaptive evolution during invasion and its influence on establishment, spread and impact of invasive species. These studies are rare but crucial for managing biological invasions in the context of global change

    Data from: Rapid adaptation to climate facilitates range expansion of an invasive plant

    No full text
    Adaptation to climate, evolving over contemporary time scales, could facilitate rapid range expansion across environmental gradients. Here, we examine local adaptation along a climatic gradient in the North American invasive plant Lythrum salicaria. We show that the evolution of earlier flowering is adaptive at the northern invasion front where it increases fitness as much as, or more than, the effects of enemy release and the evolution of increased competitive ability. However, early flowering decreases investment in vegetative growth, which reduces fitness by a factor of 3 in southern environments where the North American invasion commenced. Our results demonstrate that local adaptation can evolve quickly during range expansion, overcoming environmental constraints on propagule production

    Data from: Population divergence along lines of genetic variance and covariance in the invasive plant Lythrum salicaria in eastern North America

    No full text
    Evolution during biological invasion may occur over contemporary timescales, but the rate of evolutionary change may be inhibited by a lack of standing genetic variation for ecologically relevant traits and by fitness trade-offs among them. The extent to which these genetic constraints limit the evolution of local adaptation during biological invasion has rarely been examined. To investigate genetic constraints on life-history traits, we measured standing genetic variance and covariance in 20 populations of the invasive plant purple loosestrife (Lythrum salicaria) sampled along a latitudinal climatic gradient in eastern North America and grown under uniform conditions in a glasshouse. Genetic variances within and among populations were significant for all traits; however, strong intercorrelations among measurements of seedling growth rate, time to reproductive maturity and adult size suggested that fitness trade-offs have constrained population divergence. Evidence to support this hypothesis was obtained from the genetic variance–covariance matrix (G) and the matrix of (co)variance among population means (D), which were 79.8% (95% C.I. 77.7–82.9%) similar. These results suggest that population divergence during invasive spread of L. salicaria in eastern North America has been constrained by strong genetic correlations among life-history traits, despite large amounts of standing genetic variation for individual traits

    Selection_Data

    No full text
    Data file containing measurements of selection gradients and differential
    • …
    corecore