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Abstract

Understanding the mechanisms by which a species invades, establishes in, spreads 

through, and dominates novel habitats has been a priority for invasion biology, but there 

are surprisingly few empirical generalizations. I begin with a review of recent attempts to 

identify characteristics of species ‘invasiveness’ (i.e., the ability to invade) and habitat 

‘invasibility’ (i.e., the susceptibility to invasion), and find little support for an emerging 

consensus on species- or habitat-specific characteristics. Moreover, I find that few 

studies consider hypotheses based on the concept of ‘propagule pressure’ (i.e., 

introduction effort), despite its potential as a confounding factor. Another barrier to 

generalizations may be the divergent use of operationally important terms like ‘invasive’, 

‘naturalized’, or ‘nuisance’. I therefore introduce a framework that conceptualizes 

biological invasions as a series of obligatory stages. This stage-based framework can aid 

in identifying characteristics that are confounded by ‘propagule biases’ (i.e., non-random 

variation in introduction effort), and can serve as common ground for an operational 

lexicon. I use this framework to investigate the enemy release hypothesis (ERH), which 

relates invasion success of a host species with the number of co-occurring enemies. I 

show that patterns of enemy release may be confounded by propagule biases, leading to 

‘apparent’ release from enemies with no fitness consequences for the host. A more 

detailed analysis shows that assumptions underlying the ERH often do not hold true. A 

short review suggests that recent studies that test for enemy release are divided; 

biogeographical studies tend to reveal patterns of enemy release that are largely 

unsupported by community-level studies. This suggests that alternative scenarios for the 

success or failure of nonindigenous species may be important. Finally, I apply genetic 

markers to assess the importance of ‘propagule pressure’ to the spread of the invasive

iv
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crustacean Bythotrephes in Ontario’s inland lakes. Introduced populations are found to 

have no genetic variability at microsatellite loci, suggesting either a bottleneck during 

invasion, or a species that is genetically depauperate at microsatellite loci. Thus, 

Bythotrephes represents a highly successful invader in spite of, or due to, low genetic 

diversity.
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Chapter 1

Introduction
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Virtually all the world’s natural habitats - from tropical islands in the south Pacific to 

freshwater lakes in northern Europe - are threatened by the invasion of nonindigenous 

species (NIS). Biological invasions are now seen as a potent threat to global biodiversity, 

second only to habitat destruction (Sala et al. 2000, Rahel 2002, Stachowicz et al. 2002). 

Extending beyond ethical arguments for preserving the integrity of natural ecosystems, 

profound changes to natural ecosystems have followed the establishment of particular 

invaders. Countless examples exist of potent invaders that have transformed ecological 

communities. Examples include Nile perch {hates niloticus), zebra mussels {Dreissena 

polymorpha), water hyacinth {Eichhomia crassipes), leafy spurge {Euphorbia esula), 

purple loosestrife {Lythrum salicaria), Argentine ant {Linepithema humile), and European 

starling (Stumus vulgaris).

The level of disruption caused by NIS can be dramatic, with important implications 

for human health and welfare. Perhaps the most obvious and direct effects come from the 

invasion by nonindigenous diseases. In Canada, recent nonindigenous diseases of special 

concern include the potato wart, SARS, and the west Nile virus. In many cases these 

effects can be far-reaching: the discovery of potato wart in a single field in Prince Edward 

Island in 1999 shut down U.S. potato exports from the province for over a year. But 

perhaps the most significant and underappreciated effect of NIS are the numerous indirect 

impacts. Disruptions to the biotic composition of natural ecosystems has strong 

implications for the production of aquaculture, agriculture and forestry products in 

Canada (Maclsaac et al. 2002) and the rest of the world (Pimentel et al. 2002). Including 

both direct and indirect effects, the cost of NIS to the global economy conservatively 

exceeds $1.4 trillion worldwide (Pimentel et al. 2002).

2
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Biological invasions also serve as natural experiments, presenting unique 

opportunities to study ecological and evolutionary processes. Indeed the fact that 

biological invasions are so common represents somewhat of a paradox in ecology and 

evolution (Sax and Brown 2000). How is it that so many native species, which should be 

well adapted to their environment, come to be displaced by NIS with completely different 

evolutionary histories? Furthermore, how do so many NIS become abundant in 

completely alien territories? Some common explanations for this apparent paradox 

include the pre-adaptation of NIS for human-altered environments, a reduction in co

occurring enemies, the invasion of empty ‘niche’ space, or the superior competitive 

ability of widely successful invaders. Despite the attractiveness of these ideas, many of 

which were promoted long ago by Elton (1958), there remains a serious dearth of strong 

empirical evidence to support them (see Lodge 1993, Levine and D ’Antonio 1999, 

Williamson 1999).

Although it is perhaps underappreciated, resolving this paradox of invasion could 

prove to be an important step in refining the discipline of invasion biology. Such 

attempts however, have proven difficult given the enigmatic and sometimes contradictory 

patterns of invasions. Even Darwin (1859) appreciated these seemingly unpredictable 

patterns, writing:

“From the extraordinary manner in which European productions have recently spread 

over New Zealand, and have seized on places which must have been previously 

occupied by the indigenes, we must believe, that if all the animals and plants of Great 

Britain were set free in New Zealand, a multitude of British forms would in the course 

of time become thoroughly naturalised there, and would exterminate many of the 

natives. On the other hand, from the fact that hardly a single inhabitant of the southern

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



hemisphere has become wild in any part of Europe, we may well doubt whether, if all 

the productions of New Zealand were set free in Great Britain, any considerable 

number would be enabled to seize on places now occupied by our native plants and 

animals. Under this point of view, the productions of Great Britain stand much higher 

in the scale than those of New Zealand. Yet the most skilful naturalist, from an 

examination of the species of the two countries, could not have foreseen this result” 

Despite his brilliant insight on all matters of evolutionary biology, it is ironic that Darwin 

hadn’t seriously considered the most basic explanation for his conundrum: that species 

may have been asymmetrically introduced to New Zealand from Britain than in the 

reverse direction.

Surprisingly, the significance of propagule pressure (i.e., introduction effort) to the 

establishment of NIS has only begun to be addressed, but there are already some striking 

examples of high predictability in patterns of the establishment and spread of NIS, using 

propagule pressure and habitat suitability (Veltman et al. 1996, Lonsdale 1999, Forsyth 

and Duncan 2001, Rouget and Richardson 2003).

This thesis is firmly rooted in the concept of ‘propagule pressure’. The concept is 

admittedly simple, yet frustratingly absent from many current syntheses on invasion 

concepts (e.g., Sax and Brown 2000, Keane and Crawley 2001, Shea and Chesson 2002, 

Bruno et al. 2003). In the chapters that follow, I reassess some current procedures and 

paradigms in the literature on biological invasions and argue for the importance of 

‘propagule pressure' as a key to understanding patterns of invasion success.

Below I briefly outline each chapter of this thesis; I do not include references here 

because they are merely summaries of the chapters, which are of course fully referenced. 

Chapters are written as stand-alone articles, complete with separate abstracts and

4
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introductions. References sections have been combined at the end of the thesis to reduce

redundancy.

Chapter 2

A common criticism of invasion biology is its lack of strong empirical models and 

useful generalizations. Much recent work has focused on identifying factors that enable 

a) introduced species to become established; b) established species to become 

widespread; or c) established or widespread NIS to become dominant. Similar efforts 

have been directed toward particular communities or habitats, to identify mechanisms that 

render them susceptible to invasion. In chapter 2 ,1 try to address this problem by 

reviewing characteristics of invasive species or susceptible habitats in studies published 

since 1991. This analysis reveals only equivocal support for species- or habitat-specific 

characteristics. It also reveals that ‘propagule pressure’ is an important factor that may 

have often been underestimated or overlooked in these published studies. Based on these 

results, I argue that ‘propagule pressure’ hypotheses may help us better understand 

current patterns of invasions, and should be universally incorporated into future studies. I 

find that although ‘propagule pressure’ hypotheses have rarely been examined 

empirically, there exists a strong possibility that variation in ‘propagule pressure’ 

confounds patterns of establishment or spread of NIS. I conclude the chapter with a 

framework to better conceptualize this problem.

Chapter 3

Another important problem in invasion biology is the use of poorly defined 

terminology, a problem that has plagued much of the science of ecology. In chapter 3 ,1

5
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address some of the problems posed by a lack of operational terminology in the English 

lexicon on biological invasions. I suggest that this failure stems primarily from a lack of 

consensus on terms with a priori definitions. Consensual definitions are unlikely, given 

on-going debates on operationally important terms like ‘invasive’. Based on the 

framework developed in chapter 2 ,1 suggest that a ‘propagule pressure’-based approach 

could be used to form an operational terminology that views biological invasions as a 

sequential series of stages. A focus on the stage of interest will help to develop a 

common understanding of the determinants of invasion success (stages 0 to V). 

Furthermore, while I believe it is generally undesirable to the English lexicon on invasion 

biology, I hold that the introduction of terms with no a priori meaning can greatly aid in a 

unified conceptualization of biological invasions.

Chapter 4

Chapter 4 applies the criticisms developed in chapters 2 and 3 to the enemy release 

hypothesis (ERH) -  an idea that has recently gained much attention. The ERH seeks to 

relate the abundance and dominance (i.e., invasiveness) of NIS in their invaded range to a 

reduction in the number of co-occurring enemies (pathogens, parasites, predators, etc.). 

Presumably, enemies are lost owing to bottlenecks during the invasion process, with a 

resultant increase in vigour or survival for the target species (i.e., ‘host’). However, these 

patterns may also be a result of the ‘propagule biases’ that I define in chapter two, leading 

me to question the evidence for the ERH as a predictor of invasiveness. Patterns of 

enemy release may be a sampling artefact that is essentially a series of propagule biases 

(defined in chapter 2) acting on the potential introduction of enemies. I also suggest

6
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alternative scenarios for bottlenecks during the invasion process to predict the success of 

particular invasion events.

Chapter 5

I shift gears somewhat in chapter 5, and apply the concept of ‘propagule pressure’ to 

the spread of a particular species, Bythotrephes longimanus. Bythotrephes is a large

bodied, nonindigenous zooplankter that is strongly affecting plankton communities in the 

Great Lakes region through predation on other species. Since its initial discovery in Lake 

Huron in 1984 (later found in Lake Ontario samples from 1982), it has since spread to 

over 50 inland lakes in Ontario, and several more in the United States. My original focus 

was to develop microsatellite DNA markers to resolve the population genetic structure of 

Ontario populations of Bythotrephes. With the level of resolution afforded by 

microsatellite DNA, I could more closely examine the role of ‘propagule pressure’ in 

shaping both the geographic and genetic patterns of Bythotrephes establishment. My 

failure to find polymorphisms in 24 microsatellite loci tested on 9 populations from 

across Ontario precluded a test of the ‘propagule pressure’ model. However, these 

findings, combined with previous genetic work on Bythotrephes, suggest a severe 

bottleneck during its introduction to North America. Thus, Bythotrephes represents a 

highly successful invader despite, or perhaps due to, its low genetic diversity.

7
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Chapter 2

Propagule pressure: A null model for biological invasions

8
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Abstract

To explore factors determining invasion patterns, I conducted a review of recent invasion 

literature that examined characteristics of invasiveness (i.e., the ability of species to 

establish, spread or dominate novel communities) and 'invasibility' (i.e., the susceptibility 

of habitats to invasion). Only one o f twelve species characteristics - invasion history - 

was always positively associated with invasiveness across a variety of taxa. Two 

characteristics - generation time and asexual reproduction - were concordant over a few 

studies within taxa or when results were divided into establishment and post

establishment stages. All other characteristics examined, namely taxonomic over

representation, physiological tolerance, body size, length of growing/breeding season, 

growth fate, the rate or success of germination or hatching, seed or egg size, reproductive 

output, and consumption efficiency, contained results with contrasting patterns within 

taxa, or contained too few studies to draw conclusions. None of four characteristics of 

invasibility - disturbance, nutrient levels, species diversity or species abundance - were 

concordant among all studies. Though examined in only ~17% of studies, ‘propagule 

pressure’ (i.e., introduction effort) was a consistent predictor of establishment success for 

NIS. This factor was correlated with characteristics of invasiveness and invasibility in 

numerous studies, raising the possibility that reported determinants of establishment 

success are confounded by propagule biases. I contend that ‘propagule pressure’ should 

serve as a null model for invasion patterns and that studies should consider propagule 

biases before examining invasiveness or invasibility. I conclude with a conceptual 

framework to better identify potential confounding factors among species- and habitat- 

specific characteristics, and to more explicitly define the invasion process as a logical 

sequence of events.

9
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Introduction

Human-mediated biological invasions are occurring at an historically unprecedented pace, 

with some estimates up to 50,000 times higher than background levels of natural 

colonization (Hebert and Cristescu 2002). As such, invasions represent a significant 

threat to global biodiversity, and a potent agent of biotic homogenization (e.g., Carlton 

and Geller 1993, Rahel 2002, Stachowicz et al. 2002). Invasions also impose an 

‘invisible tax’ on national economies (Perrins et al. 2000) that may exceed $1.4 trillion 

per year worldwide (Pimentel et al. 2002). Given the extent of these problems, any 

ability to make general, a priori predictions about potential invaders or susceptible 

habitats would be of tremendous value to policy makers and resource managers, and 

could provide novel insights into processes important to ecology and evolution.

Charles Darwin (1859) was among the first to identify invasion patterns, noting 

that habitats containing ‘naturalized’ nonindigenous species (NIS) seemed to have few 

native congeners, and that habitats varied in their number of established NIS. Elton 

(1958) later emphasized biotic resistance and niche theory as processes underlying these 

patterns. Theoretical arguments have been invoked to characterize ‘weedy’ species 

(Baker 1965, 1974), and to discriminate potential NIS from unlikely invaders (e.g., Gray 

1986, Ehrlich 1989, Lodge 1993, Mack 1996, Williamson and Fitter 1996, Rejmanek 

2000). Similar attempts have been made to predict the susceptibility to invasion of 

particular habitats (e.g., Grover 1994, Moyle and Light 1996, Richardson et al. 2000a, 

Shea and Chesson 2002). Many of these models are rooted in the biotic resistance 

paradigm and emphasize competition for limited resources among native and 

nonindigenous species. But these models have recently been challenged by studies of

10
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facilitative interactions (Simberloff and von Holle 1999, Ricciardi 2001, Bruno et al. 

2003). Perhaps ironically, few predictive efforts have examined empirical relationships 

between ‘propagule pressure’ (i.e., introduction effort) and invasion success (e.g., 

Lonsdale and Lane 1994, Veltman et al. 1996, Wonham et al. 2000, Forsyth and Duncan 

2001, Rouget and Richardson 2003).

I present a brief review of recent literature reporting characteristics correlated with 

the ability of species to invade (i.e., invasiveness) and the susceptibility of habitats to be 

invaded (i.e., invasibility). These analyses are combined with studies of ‘propagule 

pressure’ to better examine factors affecting invasion success, including the establishment 

of species and the degree to which they spread to and become dominant in new habitats. 

These studies are addressed in a systematic fashion that is broad in taxonomic scope. My 

intention is not to present a comprehensive summary of the current invasion literature, but 

to draw general conclusions regarding the interplay between human influences and 

natural factors affecting species invasions. I conclude with a critique of the current state 

of predictive invasion biology, and propose a framework to aid in future efforts.

Methods

I reviewed the modem invasion literature by searching the titles, abstracts, and keywords 

of articles characterizing invasive species or invaded habitats. I searched articles 

published since 1991 from a list of 56 ecological journals (see Appendix 1 for a complete 

list of titles), using the Institute for Scientific Information (ISI) Web of Knowledge (vl.2) 

search of the ‘Science Citation Index Expanded’ database. These searches resulted in 

over 700 studies from which I chose only papers that included an objective contrast of

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



two or more species (e.g., nonindigenous and native species, invasive and non-invasive 

species, etc.). Thus, I excluded theoretical papers, studies of natural colonisations by 

native species, post hoc analyses of specific invaders, impact assessments, and reviews or 

syntheses lacking empirical data. I included only studies that explicitly examined 

characteristics of successful invaders or susceptible habitats and those that explored the 

role of propagule pressure. For the purposes of this paper, ‘propagule pressure’ is defined 

by the number of discrete introductions, and the total number of individuals introduced.

In total, I reviewed 140 studies of which 54 dealt primarily with invasiveness, 82 with 

invasibility, and 2 with results relevant to both. Of these, 11 invasiveness and 13 

invasibility studies examined the role of propagule pressure (Appendix 2).

All papers examined in Appendix 2 were categorized in terms of theme (i.e., 

invasiveness, invasibility or propagule pressure) and taxon studied, as well as by the 

contrast groups used (i.e., established NIS vs. resident native species, established NIS vs. 

native species from the same source region, established NIS vs. failed introductions, or 

invasive vs. non-invasive species). I also examined abstracts to identify characteristics 

associated with successful invaders or susceptible habitats (e.g., seed size, species 

diversity) and measurements of propagule pressure. For each of these measurements, I 

recorded whether associations with invasiveness or invasibility were reported as positive, 

negative, or not significantly different.

I organized NIS characteristics into five groups: plants, invertebrates, fishes, birds, 

and mammals. Similarly, studies of invasibility were grouped based on the type of 

invaders examined: plants, birds, fishes, invertebrates and micro-organisms, mammals, or 

multiple taxa. Results for invasiveness characteristics were categorized into one of two

12
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stages of the invasion process (i.e., established or post-establishment), following Kolar 

and Lodge (2001,2002).

Invasiveness Traits

Analyses of invasiveness characteristics used either replicated experiments (11 cases) or 

post hoc (i.e., observational) comparisons (43 cases). Studies were considered to be tests 

of the establishment success if they involved contrasts between established NIS and one 

of the following: 1) species found in the same source region(s) as the NIS; 2) native 

species in the invaded region; or 3) from a list of global congeners; or 4) other introduced 

species that failed to establish self-reproducing populations (Appendix 2A). Additionally, 

some studies examined characteristics of established NIS that varied in their rates of 

spread or their ability to dominate natural habitats. I considered these as tests of the post

establishment stage (Table 1).

Only one invasiveness characteristic (i.e., invasion history; Table 1) was 

concordant across a broad range of taxa. Growth rate and hermaphroditic (or asexual) 

reproduction varied between, but were concordant within, invasion stages (i.e., 

establishment vs. post-establishment). For the most part, however, contradictory patterns 

remained even after separating characteristics based on invasion stage and taxon (Table 

1). For example, physiological tolerance was positively correlated with establishment or 

post-establishment success in four plant studies and three fish studies, but was negatively 

correlated in three plant studies and one study of invertebrates.

13
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Invasibility Traits

To identify differences in habitat invasibility, 14 experimental and 68 post hoc analyses 

characterized susceptible habitats based on one or more of the following measurements:

1) abundance of NIS, including area of cover, biomass, or number of individuals; 2) 

diversity of NIS, including diversity indices or other measures of the number of NIS; 3) 

survivorship and/or reproduction of particular NIS in different habitats; and 4) 

presence/absence of particular species among habitats (Appendix 2B).

Characteristics of invasibility fell primarily into one of the following categories: 

disturbance, nutrient levels, resident species diversity, or resident species abundance 

(Table 2). One additional class, which I termed ‘anthropogenic exposure’, compared 

measurements of human activity (e.g., proximity to roads or urban areas) with 

invasibility. In these cases, the mechanism underlying invasion patterns may be 

‘propagule pressure’, disturbance or some interaction between them. No characteristics 

were consistent among all studies of invasibility, and results were heavily biased toward 

the plant literature (Table 2). Of characteristics represented by more than one taxon or 

more than three studies, only anthropogenic exposure did not contain studies reporting 

both positive and negative relationships with invasibility. Interestingly, the effects of 

species diversity and species abundance were almost evenly divided among positive and 

negative relationships with invasibility (Table 2).

The role of propagule pressure

I identified 24 studies that specifically examined the effects of ‘propagule pressure’ on 

establishment success (Table 1 and 2). Several other studies considered ‘propagule
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pressure’ as a confounding variable, but did not test it explicitly. In all cases, ‘propagule 

pressure’ was addressed in one of four ways: 1) deliberate introduction of a known 

number of propagules into replicated plots (e.g., Mesleard et al. 1993, Miller et al. 2002);

2) replicated plots were colonized by both native and nonindigenous species, but the 

number of propagules was not controlled per se (Shurin 2000); 3) historical records of the 

number of individuals introduced, or some proxy of it. These included records of 

introduction by regional governments or ‘acclimatization societies’ (e.g., Veltman et al. 

1997, Duncan et al. 2001), propagules identified in a transport vector (e.g., Wonham et al. 

2000) or historical data on intensity of use (e.g., Richardson 1998, Prinzing et al. 2002); 

and 4) analysis of anthropogenic activity or correlates thereof, including economic data 

and areas of human use (e.g., urban areas, proximity to roads). In the latter case, effects 

of disturbance versus introduction effort were often impossible to distinguish (Table 2). 

For example, Vila and Pujadas (2001) successfully accounted for over 60% of European 

and North African plant invasions using a general ‘Human Development Index’.

Where ‘propagule pressure’ was explicitly examined, 22 of 24 studies found 

positive associations with establishment or post-establishment success (Tables 1 and 2), 

and one study found no relationship. Additionally, 29 of 30 studies that examined human 

activity (i.e., representing disturbance and/or propagule pressure) found positive 

associations, while one study found no relationship (Table 2). Thus, ‘propagule pressure’ 

was positively associated with the establishment of NIS, the post-establishment success of 

NIS, and the susceptibility of habitats to invasion. Furthermore, studies that identified 

invasiveness and invasibility characteristics rarely considered ‘propagule pressure’ 

hypotheses (Fig. 1). It is important to note, however, that many studies were from the 

same region (e.g. bird introductions to New Zealand) and therefore do not represent
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independent samples. Additionally, studies finding no difference between invasiveness 

and invasibility characteristics are likely under-reported in the literature.

Critique of methodologies

The overall lack of consistent relationships between characteristics of invasiveness and 

invasibility in this review mirrors a general lack of predictability in invasion biology — a 

problem highlighted by others (e.g., Enserink 1999, Williamson 1999). To address this 

problem, Kolar and Lodge (2001, 2002) advocated that NIS characteristics be assessed at 

each stage of the invasion process. Results from this review show support for this 

method, but contradictory patterns for similar taxa at similar stages suggest that 

characteristics of invaders may still be confounded (e.g., physiological tolerance and body 

size in Table 1). Additionally, contradictions of factors affecting invasibility cannot be 

addressed under this methodology. For example, disturbance is not always positively 

associated with invasibility, and may be system-specific (e.g., Table 2; see also Lozon 

andMacIsaac 1997).

This lack of consensus among invasion patterns at a topical level may also reflect 

a difference in analysis procedures. For example, Cassey (2001) noted that smaller birds 

tended to be more successful at establishing than larger ones, but after controlling for 

taxonomic similarity the pattern was reversed. Another possible explanation for this lack 

of consensus is the inherent complexity of biological invasions. Predicting invasions 

might necessarily be confined to particular species-by-habitat interactions (Tucker and 

Richardson 1995, Kolar and Lodge 2002). A lack of clear, operational definitions in 

invasion biology may also be a source of confounding of invasion paradigms because
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poor definitions have likely led to the splitting of common phenomena and the lumping of 

unique ones. Finally, an inability to find generalities may stem from a failure of the 

assumptions underlying the ways in which characteristics of invasiveness and invasibility 

are addressed. Below I explore this possibility in more detail.

Habitat invasibility is typically inferred from the number or abundance of 

established NIS (e.g., Lonsdale 1999, Symstad 2000, Davis and Pelsor 2001). But habitat 

invasibility is characterized by an inherent susceptibility to invasions rather than the 

number or abundance of established species per se, independent of whether invaders are 

native or nonindigenous. In a similar manner, species invasiveness reflects an inherent 

ability of species to establish and proliferate in novel habitats. Establishment success is 

thus an inherent prediction of both the invasiveness of species and the invasibility of 

habitats, but other mechanisms can produce a similar pattern. Studies that infer a causal 

relationship from these patterns alone suffer from the non-sequitur, logical fallacy 

‘affirming the consequent’ (Copi and Cohen 1990). In other words, affirming a predicted 

pattern (e.g., finding a correlation between a habitat characteristic and the number of NIS) 

is not sufficient to infer causation (e.g., inferring biotic resistance or competition) when 

other explanations are possible. Propagule pressure is a consistent predictor of 

establishment (e.g., Veltman et al. 1996, Duncan et al. 2001, Forsyth and Duncan 2001); 

therefore it is likely correlated with many characteristics of successful invaders or 

susceptible habitats. In addition to statistical correlations with establishment (e.g., 

Blackburn and Duncan 2001), propagule pressure has been shown to strongly influence 

the probability of establishment in a number of experimental studies (e.g., Hopper and
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Roush 1993, Memmot et al. 1998, Grevstad 1999). Patterns of invasion may therefore be 

confounded if propagules are chosen non-randomly.

Species that are deliberately introduced represent non-random samples of all 

possible invaders because they are chosen according to human preference. When 

processes underlying invasion success are inferred from post hoc analyses, there is a high 

risk for spurious correlations between habitat- or species-specific characteristics and 

invasion success. Studies that examine characteristics of deliberately introduced NIS are 

therefore prone to ‘propagule biases’, which I define as non-random variation in the 

delivery of propagules, resulting in spurious correlations between invasion success and 

some characteristic or pattern of interest (e.g., habitat diversity, flower size, introduced 

range).

Due to the likelihood of non-random variation in the propagule pressure of 

deliberately introduced organisms, propagule biases may confound studies of numerous 

taxa. For example, globally invasive birds tend to belong to just seven families (of -204 

worldwide; Clements 2000), including Anatidae (ducks and geese), Phasianidae 

(pheasants) and other taxa commensal with human activity (Lockwood 1999). Similarly, 

Mack and Emeberg (2002) estimated that between 57 and 67% of nonindigenous flora 

were intentionally introduced to the United States. In Argentina, NIS tend to be those 

utilized by humans (Prinzing et al. 2002), and the most problematical globally invasive 

Pinus species tend to be those planted the most widely and for the longest times 

(Richardson 1998). Perhaps the best example is the study of globally introduced birds 

from Blackburn and Duncan (2001), who suggest that patterns of taxonomic over

representation, disproportionate invasions to temperate and island locations, and
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geographical range are highly constrained by non-random variation in introduction effort. 

In other words, species with large ranges and from a restricted number of families are 

disproportionately introduced to temperate and island locations.

Accidental introductions also may be prone to propagule biases. In the Great 

Lakes, for example, approximately 85% of established NIS are the result of unintentional 

introductions, primarily through discharge of contaminated ballast water (Mills et al. 

1993, Ricciardi 2001, Grigorovich et al. 2003). However, the majority of these 

introductions originate from relatively few regions of the world (Maclsaac et al. 2001, 

Colautti et al. 2003), and are thus non-random samples of the species pool. An additional 

propagule bias arises because species characteristics likely reflect their propensity for 

uptake and survival in the (ballast) transport vector, rather than inherent ecological or 

evolutionary advantages (Carlton 1985, Ricciardi and Maclsaac 2000). Thus, the 

majority of deliberately and accidentally introduced NIS likely represent non-random 

samples before they even reach the establishment stage where community and 

environmental variables may become important.

Habitat and species characteristics important to the outcome of invasion may vary 

with invasion stage (Kolar and Lodge 2001,2002). I take this one step further, and argue 

that patterns apparent at any stage of the invasion process may be confounded by 

propagule biases at any of its preceding stages. To help conceptualize this, Fig. 2 

combines Carlton’s (1985) ballast water transport model, Williamson and Fitter’s (1996) 

‘tens rule’, barriers to invasion in Richardson et al. (20006), and Kolar and Lodge’s 

(2001) ‘transitions’ model. The invasion process is thus broken into stages where filters 

may preclude species from reaching each subsequent stage. Factors affecting transition
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between each stage can be categorized as propagule pressure (A; Fig. 2), physico

chemical conditions (B), or community composition (C). Particular invasion 

determinants act to promote or impede the transition of species to each stage (Fig. 2).

To demonstrate how determinants drive invasion patterns, Fig. 3a shows a 

propagule bias arising from four determinants influencing which species establish 

(commercial value and popularity in the case of deliberate introduction, pelagic life stage 

and survival of transport in the case of accidental introduction). Even ignoring any 

species-ecosystem interactions, by assuming a 15% flat rate of establishment success, 

confounding effects might emerge if two contrast groups are not exposed to the same 

filters and are, therefore, not subject to the same determinants at similar intensities. Fig. 

3b demonstrates how the choice of contrast groups can lead to spurious patterns of NIS 

characteristics, independent of any ecological interactions (e.g., competition, facilitation).

Logically, determinants may only confound patterns at the same or subsequent 

stages of the invasion process. Thus, identifying the important determinants based on 

post hoc analyses (i.e., observational studies) could be difficult. For example, several 

determinants can result in significant differences in flowering period between Stage III 

(established) plants and resident native species. One possible explanation is that a long 

flowering period confers a competitive advantage by allowing more time for pollination. 

However, a trend toward longer flower duration could also emerge if there was a strong 

commercial market for plants with extended flowering. Thus, the same pattern could 

result from an ecologically significant interaction or from a simple propagule bias, or 

both. Table 3 lists a number of oft-cited characteristics that may be directly confounded 

by propagule biases.
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In addition to these direct biases, some characteristics correlated with invasion 

success may be indirectly confounded by propagule biases. Such a case might exist, for 

example, if smaller seed size was correlated with long flowering time. Disproportionate 

importation of long-lived flowers could thus result in an indirect propagule bias toward 

smaller seed size. Characteristics that are prone to a direct propagule bias are likely to 

reflect human influence or transport survival (Table 3), whereas virtually any 

characteristic may be confounded by an indirect propagule bias.

Studies of invasiveness and invasibility may suffer from the causal fallacy of 

‘joint effect’ (Copi and Cohen 1990), where one parameter such as body size is held to 

cause another (e.g., invasion success) when in fact they are both resultant from an 

underlying cause (e.g., propagule bias). In complex systems like ecological communities, 

several factors often work in concert, rendering difficult, or impossible, attempts to infer 

causation from observed patterns. Even where observations are not compatible with 

predicted patterns, ad hoc arguments are often invoked to explain discordant results.

Such a practice can lead to erroneous predictions and extraneous complexity, a pervasive 

problem in ecology that has been criticized elsewhere (Peters 1991).

Given an historic lack of predictability among invasion studies, recent attempts 

have been made to predict high-risk species using characteristics of successful and 

unsuccessful invaders (Tucker and Richardson 1995, Reichard and Hamilton 1997, Kolar 

and Lodge 2002). Such studies are likely system-specific, but represent significant 

advances in invasion biology as they offer testable, a priori predictions. However, I feel 

the need to stress the inherent danger in developing management strategies when 

causation cannot be proven. This is particularly poignant in the case of invasions, where
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patterns of invasion success may be confounded by propagule biases. In such cases, 

innocuous species may be blacklisted simply because they share traits with species that 

are commensal with human activity (i.e., type I error). Alternatively, species that are not 

commensal with human activity, including those with a potential to become invasive or 

even a nuisance, may be allowed entry because they do not share traits common among 

historically introduced species (i.e., type II error). This might occur if models were 

inadvertently built on characteristics reflecting the common geographic origins of NIS 

found in a particular region (e.g., Ponto-Caspian species in the Great Lakes). If import 

origins then changed, as might be the case with an emerging third world economy, then 

predictive models could fail. More importantly, the ability of imported species to 

establish and spread may be at least partially dependent upon propagule pressure. As 

such, classifying a species as harmless could actually serve to increase its rate of 

importation, thereby facilitating its invasion!

Propagule biases may also confound theoretical expectations. For example, some 

ecosystems have experienced a series of successful invasions by species native to one 

particular geographic area, as has happened in the Great Lakes (Ricciardi and Maclsaac 

2000). While this pattern is consistent with an ‘invasional meltdown’ scenario in which 

early invaders facilitate later ones (Ricciardi 2001), it also could result from a propagule 

bias in which species from a particular donor area are differentially transported to the 

recipient ecosystem. However, these processes needn’t be mutually exclusive; propagule 

pressure might be more important in determining which species invade and become 

widespread (i.e., stages 0-fVa) while facilitative interactions determine which species 

become dominant or prevalent (stage IVb or V).
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Framework for future studies

From this review, it is clear that ‘propagule pressure’ is a significant predictor (in 23 of 

24 studies) of establishment success. Furthermore, non-random variation in ‘propagule 

pressure’ may result in propagule biases capable of confounding patterns of invasion 

success. Given this potential for confounded patterns at every stage of the invasion 

process, I suggest a propagule pressure-based approach to act as a starting point for the 

study and management of invasions. This suggestion in no way pre-supposes that 

physiological attributes of NIS or interspecific interactions among NIS and recipient 

communities are unimportant. Rather, questions of invasion success (i.e., successful 

transition of each stage of the invasion process) ought to be explored in a logical manner 

beginning with ‘propagule pressure’. At a minimum, propagule pressure ought to be 

considered as a covariate in studies exploring other mechanisms.

The likelihood of covariance among ‘propagule pressure’ and patterns of 

invasiveness and invasibility suggested by this review also raises an analytical dilemma in 

that there is a reciprocal possibility for cause-and-effect. In other words, introduced 

species may be more successful because more propagules are introduced, or invaders may 

be introduced more because they are better at establishing. However, two factors suggest 

to me that this latter scenario cannot adequately explain correlations between ‘propagule 

pressure’ and establishment. First, propagule biases that affect unintentionally introduced 

NIS are not part of this dilemma, yet unintentional introductions are often strongly 

correlated with measurements of ‘propagule pressure’. For example, Lonsdale (1999) 

found that invasibility of nature reserves was strongly correlated with the number of 

visitors, and Vila and Pujadas (2001) and Levine and D’Antonio (2003) found a strong
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correlation between the intensity of commodity import and the number of established 

NIS. Invasions in the Laurentian Great Lakes and many navigable waterways are 

likewise biased toward invasion from biota linked by dominant shipping vectors (e.g., 

Maclsaac et al. 2001, Grigorovich et al. 20036, see also Carlton 1996 and Ruiz et al.

2000). Second, experimental studies that have explicitly tested ‘propagule pressure’ for 

individual species (e.g. biological control experiments) have consistently found a positive 

effect on establishment success (e.g., Hopper and Roush 1993, Memmot et al. 1998, 

Grevstad 1999).

Until sufficient data exist to suggest otherwise, I maintain that ‘propagule 

pressure’ should form the basis of a null model for invasion studies because it holds such 

potential to confound invasion patterns and because it models invasions simply as a 

probabilistic process. Thus, future attempts to distinguish characteristics of invaders 

should first attempt to dismiss confounding propagule biases before other processes are 

implicated. The ‘propagule pressure’ model presented here is not mutually exclusive of 

other biological and environmental processes; rather it forms a basis on which such 

processes can better be explored in supplement. Such a protocol may seem daunting, but 

compared to the myriad possibilities underlying biological interactions it may prove 

useful in harmonizing discordant characteristics of successful invaders or susceptible 

habitats.

For example, this review reveals that invasibility is equally associated with 

species-rich and species-poor communities; this pattern is analogous to the highly 

controversial diversity-stability debate (e.g., McGrady-Steed et al. 1997, Hector et al. 

1999, Stachowicz et al. 1999, Huston et al. 2000). Levine and D ’Antonio (1999)
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reviewed studies relating species diversity to invasibility and noted that experimental 

studies tended to find diverse communities more resistant to invasion, while observational 

studies often found the opposite - a positive correlation between species diversity and the 

number of NIS established. Levine (2000, 2001) later demonstrated that more diverse 

communities were less resistant to, but not exempt from, invasions at a local scale, but 

that this pattern could be confounded by variation in propagule pressure at a regional 

scale.

Progress is already being made toward eliminating propagule biases. Several 

experimental studies have correlated species characteristics to invasion success even after 

considering ‘propagule pressure’. This has been accomplished either by controlling the 

number of propagules (e.g., Grotkopp et al. 2002), or through a multi-step regression 

analysis when introduction effort was known (e.g., Sol and Lefebvre 2000, Duncan et al.

2001). Similarly, experimental studies of invasibility have found significant relationships 

between habitat characteristics and invasion success, even when plots received equal 

numbers of propagules. Using experimental plots with equal numbers of seeds 

propagules, for example, Burke and Grime (1996) and Davis and Pelsor (2000) found 

strong support for the importance of resource availability to invasibility. These types of 

studies should form the basis for future exploration of factors affecting invasiveness and 

invasibility. However, it is important to question the biological significance of these 

findings in natural ecosystems, how they may be confounded by ‘propagule pressure’, 

and at which stages (from Fig. 2) they are most important. Thus, there remains a large 

intellectual gap in experimental tests of the relative importance of propagule pressure and
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other biotic and environmental factors to the success of NIS at each of the invasion

stages.

Conclusion

My intention is not to repudiate the importance of biological processes as determinants of 

invasion success; rather I propose that propagule pressure-based hypotheses represent the 

appropriate starting point to predict successful transition of the invasion stages. Instead 

of focusing on complex, system-specific biotic interactions, management efforts may be 

better spent reducing opportunities for unintentional introductions and escapes, while 

activities that deliberately introduce NIS should be re-examined. Given the implications 

of ‘propagule pressure’ for invasions, eradication programs should weight heavily the 

importance of propagule pressure on the spread of established NIS. For example, 

prescribed burnings designed to open space for native species may prove futile if 

propagules from nearby populations of NIS are not precluded (e.g., Simberloff et al. 

2003).

A comprehensive, scientific understanding of ecosystem dynamics can only 

benefit from the inclusion in future analyses of quantified ‘propagule pressure’ and 

acknowledgement of its potentially confounding effects. I anticipate that this suggestion 

will not be universally accepted, but it should provide a framework to guide invasion 

biologists to a better understanding of patterns and processes underlying the ecology of 

invasions.

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright ow
ner. 

Further reproduction 
prohibited 

w
ithout perm

ission.

T able 1. Reported characteristics of ‘invasiveness’. Summary of observations (usually separate studies) implicating positive (+), 

negative (-), or no (n.d.) relationship between characteristics o f successful invaders during establishment or subsequent stages 

(post-establishment). Results are identified by taxon as follows: plants (p), birds (b), fishes (f), invertebrates (i), and mammals (m). 

Characteristic examined Relationship with invasiveness

Establishment Post-establishment

+ - n.d. + - n.d.

Propagule pressure lp ,li,lf,6b ,lm Ip

Taxonomic over-representation 3p,2b Ip

Physiological tolerance 3p ,lf 3p,li Ip lp,2f

Body size Ip,3b li,lb I? lb If

Length of growing/breeding season 2p IP IP If

Growth rate Ip ,If If

Generation time lb 4p,li,lm lp ,lb I f

Invasion history or widespread 4p,li,lg,2b lb

Germination/hatch success or rate 7p lp
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T ab le  2. Reported characteristics of ‘invasibility’. Summary of observations (usually separate studies) implicating positive (+), 

negative (-), or no (n.d.) relationship between characteristics of habitats susceptible to invasion. Results are identified by taxon as 

follows: plants (p), birds (b), fishes (f), invertebrates/micro-organisms (i), mammals (m), and multiple taxa (s).

Characteristic examined Relationship with ‘invasibility’

+ - n.d.

Propagule pressure 9p,2b,Is Ip

Anthropogenic exposure 24p,2b,lf,lm ,ls lp

Disturbance 24p 3p ,lf lp

Nutrient levels 10p,lb,2i lp 2p

Species diversity 10p,lb 9p,lb ,lf,3i,lm ,ls 4p,lf,li

Species abundance 4p,ls 6p ,lf lp, li
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T able 3. Some commonly cited characteristics that may be confounded by a direct ‘propagule bias’ (i.e., non-random variation in 

propagule pressure; see text for further explanation). Characteristics are separated by stages of the invasion process from Fig. 2 

(bold), and some possible propagule biases (italics) driving non-random variation in propagule pressure at each stage. Note that 

virtually any characteristic may be a result of an indirect propagule bias because characteristics may be indirectly correlated with 

propagule pressure (see text).

Stage I (transport) biases

Ease o f  cultivation, desirability, or covariates thereof 

competitive ability 

growth rate 

reproductive rate 

time to maturity

Stage II (introduction) bias

Survival o f transport

competitive ability ('hardiness')

reproductive rate 

vegetative/asexual reproduction 

presence of a dormant stage
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Table 3 (continued)

vegetative/asexual reproduction

presence of dormant stage

size o f propagules

number o f propagules

presence o f predators/parasites

phenology compared to native species.

taxonomic over/under-representation

physiological tolerances 

body size

ability to utilize local pollinators

size of propagules

number of propagules

dispersal mode/efficiency

physiological tolerances

pre-germination treatment

Stage (spread) IVa bias

Human-mediated dispersal

growth rate

reproductive rate
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Table 3 (continued)

root density

Attainability and factors affecting accidental transport 

reproductive rate 

vegetative/asexual reproduction 

presence o f dormant stage 

size o f propagules 

number o f propagules 

dispersal mode/efficiency 

invasive elsewhere

32

time to maturity 

vegetative/asexual reproduction

presence of dormant stage 

size o f propagules

number of propagules

dispersal mode/efficiency

invasive elsewhere



Figure 1. Studies describing characteristics of successful invaders or habitats susceptible 

to invasion. Studies in which propagule pressure was explicitly considered (white 

bars) make up only a small proportion of most types of studies. A) Characteristics of 

successful invaders: 1 -  taxonomic over-representation, 2 -  physiological tolerance, 3 

-  body size, 4 -  length of growing/breeding season, 5 -  growth rate, 6 -  generation 

time, 7 -  invasion history or widespread, 8 -  germination/hatch success or rate, 9 -  

seed/egg size, 10 -  reproductive output, 11 -  consumption efficiency, 12 -  

hermaphroditic/asexual reproduction. B) Characteristics of habitats susceptible to 

invasion: 1 -  anthropogenic exposure, 2 -  disturbance, 3 -  nutrient levels, 4 -  species 

diversity, 5 -  species abundance.
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Figure 2. Stage-based model of the process of biological invasions. Invasions are

modelled as a series of successive stages (0-V). Beginning with a pool of species in a 

source region, sub-sampling of species occur at early stages of the invasion process. 

Three classes of determinants may act to aid (+) or impede (-) the transition of 

species to each subsequent stage: propagule pressure (A), physico-chemical factors 

(B) and community interactions (C). Additionally, filters act at each stage to preclude 

transition between stages. Note that species may be widespread but rare (stage IVa), 

localized but dominant (stage IVb) or widespread and dominant (i.e., stage V).
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Figure 3. Graphical representation o f the confounding effects o f propagule pressure.

Each symbol represents a different species. A) Assuming a flat establishment rate 

(i.e., not species-specific), propagule biases (i.e., non-random variation in introduction 

effort) such as ‘commercial value’ or ‘popularity’, may result in the transport (stage I) 

and introduction (stage II) of NIS with similar characteristics (e.g., flower size or 

colour). B) Established NIS may therefore differ dramatically from their congeners, 

owing to propagule biases. One of three groups of species are typically contrasted 

with NIS to identify characteristics of established nonindigenous species: ‘native’ - 

native to the invaded region, stage 0 -  native to the source region, and stage II -  

introduced but not established. Characteristics confounded by propagule pressure are 

expected to increase with the number of propagule biases, thus there should be more 

differences between NIS and native species in the recipient community than between 

NIS and failed invaders (i.e., those that are introduced but fail to establish).
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Chapter 3

A process-based approach to biological invasions
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Abstract

The use of simple terms to articulate ecological concepts can result in liberal or divergent 

definitions that confound conceptual debates. This problem is particularly acute in 

studies of nonindigenous species, which alternatively have been called ‘exotic’, 

‘introduced’, ‘invasive’ and ‘naturalized’, among others. Because attempts to redefine 

commonly used terminology have failed, I introduce a synthetic framework that instead 

focuses on the invasion process. Operationally important terms in this framework are 

based on a model that breaks the invasion process into a series of consecutive, obligatory 

stages and identifies factors affecting success of species at each stage. Under this 

framework, invasions can be more objectively defined as a biogeographical phenomenon, 

and different preferences in the use of existing terminology can be addressed.

Introduction

Terms and concepts crucial to understanding ecology have often been criticized for their 

tautological, ambiguous or non-operational nature. Classic examples of problematic 

ecological terminology include concepts like ecosystem, diversity-stability, and the 

ecological niche (see McIntosh 1985, Peters 1991, Grimm and Wissel 1997). While the 

widespread use of ordinary words in the English ecological literature has allowed rapid 

dissemination of novel ideas, it also has impeded progress of objective scientific theory 

(Peters 1991). Invasion ecology has enjoyed a rapid ascension in the public domain, 

owing in part to the extensive use of adjectives like ‘invasive’, ‘alien’, ‘noxious’ and 

‘exotic’ (Chew and Laubichler 2003). However, subconscious associations with 

preconceived terms, particularly emotive ones, can also lead to divergent interpretations 

and a confusion of concepts and theory. These differences can become problematic if
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they cloud conceptualization of the processes they are meant to describe (see McIntosh 

1985, Peters 1991, Pysek 1995, Richardson et al. 2000a, Shrader-Frechette 2001). This 

problem is perhaps best highlighted by the recent publication of widely divergent 

perceptions of the criteria for ‘invasive’ species (Davis and Thompson 2001, Rejmanek et 

al. 2002, Chew and Laubichler 2003).

Lack of consensus

Many important terms relevant to invasion biology theory, like ‘invasive’, ‘weed’ or 

‘transient’, include qualities that are open to subjective interpretation. For example, it is 

generally accepted that the adjectives ‘noxious’ and ‘nuisance’ are used to imply adverse 

effects on humans, either directly (e.g., species that produce toxins that are harmful to 

humans) or indirectly (e.g., species that infest nature reserves). However, this reliance on 

human interaction has three important analytical consequences. First, definitive criteria 

may vary dramatically, ranging from species with aesthetically displeasing effects (e.g., 

Civeyrel and Simberloff 1996), to those that are vectors for serious human diseases (e.g., 

Lounibos 2002). Second, species may be considered a nuisance (or weedy, invasive, etc.) 

in areas where they have little or no effect simply because they were identified as a 

nuisance elsewhere (e.g., Morton 1996). Indeed, the screening model developed to 

identify possible harmful plants imported to Australia depends heavily on previous 

invasion history (Pheloung et al. 1999). Finally, a particular species can have both 

beneficial and detrimental effects, depending on criteria employed. For example, the 

mosquitofish Gambusia affinis has been widely introduced because of its supposed 

suppression of larval mosquitoes (Fuller et al. 1999), yet it also has negative affects on 

native species of insects, fish and amphibians (e.g., Rupp 1996, Goodsell and Kats 1999).
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Given this wide range of subjective criteria, terms like ‘nuisance’ may have more to do 

with human perception than with any inherent ecological parameters. As such, these 

subjective terms may complicate or confound investigations of invasion patterns and 

processes.

In addition to a lack of empirically defined criteria, other terms also lack 

consensus on a more basic level. Ironically, the greatest confusion surrounds the 

common term ‘invasive’ and its various derivatives (Richardson et al. 2000a). Explicit or 

implicit definitions for ‘invasive’ include: 1) a synonym for ‘nonindigenous’ (e.g., 

Goodwin et al. 1999, Radford and Cousens 2000); 2) an adjective for native or 

nonindigenous species that have colonized natural areas (e.g., Burke and Grime 1996); 3) 

discrimination of NIS established in cultivated habitats (as ‘non-invasive’) from those 

established in natural habitats (e.g., Reichard and Hamilton 1997); 4) NIS that are 

widespread (e.g., van Clef and Stiles 2001); or 5) widespread NIS that have adverse 

effects on the invaded habitat (e.g., Davis and Thompson 2000, Mack et al. 2000). The 

latter definition has gained popularity with some international conservation organizations 

(e.g., IUCN 1999, McNeely et al. 2001), but has been criticized by others (Rejmanek et 

al. 2002). Richardson et al. (2000a) similarly noted that the term ‘naturalized’ is equally 

confused, including uses as a synonym for ‘alien’, a synonym for ‘invasive’, a synonym 

for ‘established’, or specifically for NIS able to establish in undisturbed habitats. 

Richardson et al. (2000a) advocated for a biogeographical approach to defining 

established, naturalized and invasive species, a concept with which I agree.

Table 1 identifies a non-exhaustive series of adjectives commonly used in the 

English literature on invasive species. Many of these terms have been used 

interchangeably to describe the same concept (e.g., nonindigenous, exotic, alien), while
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the same term has been used to describe different processes (e.g., invasive, naturalized, 

imported). Although this criticism may at first seem semantic, varied definitions can 

cloud theoretical issues. This leads to the lumping together of different concepts, and the 

splitting of similar ones, which in turn makes generalization difficult or impossible. For 

example, a particular species may have a widespread region of introduction in which it is 

only found at low abundance, or may be established in only one area where it is locally 

abundant. The term ‘invasive’ has been used in both cases, but the underlying processes 

accounting for these two patterns may be quite different; human-mediated transport is 

likely most important in the former case, whereas biological processes (e.g., competitive 

ability, lack of natural enemies) may be more important in the latter (see also Richardson 

et al. 2000a). Indeed the very terms used to describe NIS (e.g., exotic, non-native, 

introduced, etc.) are misnomers in that nonindigenous species are really nonindigenous 

populations of species. In other words, the same ‘species’ that are nonindigenous, 

naturalized, or invasive in one area are native somewhere else. A focus on invasions at a 

population level has important implications for both invasion biology and ecological 

theory.

Problems with invasion terminology reflect a more general dilemma in ecology: 

the ‘non-operational’ or casual use of important terms and concepts (McIntosh 1985, 

Peters 1991). Furthermore, recent attempts to redefine ‘invasion’ and its derivatives have 

only reinforced division among invasion biologists (Davis and Thompson 2000, 

Richardson et al. 2000a, Daehler 2001, Davis and Thompson 2001, 2002, Rejmanek et al.

2002). A complete restructuring of invasion terminology is beyond the scope of this 

essay. However, I maintain that failure to operationalise definitions is sufficiently 

harmful that a consensus on definitions must be achieved in order to reduce confusion and
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allow for unambiguous generalizations and predictions. Such a consensus would greatly 

reduce confusion among researchers, and would facilitate a more directed approach to 

finding generalizations and better understanding of phenomena associated with biological 

invasions. Considering the conservation implications of biological invasions, it is 

imperative that workers in the field provide clear, objective definitions and models to 

managers and other officials charged with protection of native biodiversity.

Consensus for an operational lexicon

Davis and Thompson (2000) classified colonizing species into eight categories based 

upon dispersal distance, novelty, and impact. As such, their ‘colonizer’ model assumes 

that NIS are simply colonizing species, moved over long distances. This use of categories 

may be key to uniting invasion paradigms, as their explicit definitions help eliminate 

inferential ‘baggage’ associated with common words and the subtle, subconscious 

definitions that often vary between authors. However, I disagree with the assumptions of 

the ‘colonizer’ model, as have other workers (Daehler 2001, Rejmanek et al. 2002). 

Contrary to the Davis and Thompson (2000) colonizer model, I argue that NIS are 

inherently different from native colonizers, owing to separate evolutionary histories and 

different propensities for commensal interactions with humans. Furthermore, the process 

of becoming ‘invasive’ (i.e., both widespread and locally dominant), even if it includes 

negative effects, is always the climax of a process that includes establishment and local 

spread, followed by an increase in abundance (Fig 1; see also Richardson et al. 2000a, 

Kolar and Lodge 2001). Once established, however, processes that determine species 

distribution and abundance are conceptually similar for both native and nonindigenous 

species.
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In a seminal contribution, Richardson et al. (2000a) proposed a comprehensive 

model that described invasions as a sequential process in which NIS progress through a 

series of invasion stages. Their model was specific to plants, but is conceptually similar 

to other, more general models (i.e., Carlton 1985, Williamson and Fitter 1996; Kolar and 

Lodge 2001; reviewed in chapter 2). However, these studies attempted to clarify terms 

already common to the invasion literature. Previous efforts to redefine invasion 

terminology have been largely unsuccessful (e.g., Shafland and Lewis 1984, Binggeli 

1994). Thus, I maintain that proposals for universal definitions are unlikely to succeed 

unless authors forego their individual preferences. Consequently, I suggest that a useful 

invasion framework should be process-based and include operational terms with no a 

priori meaning (i.e., as ‘stages’).

In chapter 2 ,1 developed a conceptual framework synthesized from Carlton’s 

(1985) ballast water transport model, Williamson and Fitter’s (1996) ‘tens rule’, 

Richardson et al.’s (2000a) barriers to invasion, and Kolar and Lodge’s (2001) 

‘transitions’ model. I suggest that future studies explicitly refer to the invasion stages of 

interest (Fig. 1). Such an approach utilizes novel terms with no a priori definitions and 

builds upon existing invasion models (Carlton 1985, Williamson and Fitter 1996, 

Richardson et al. 2000a, Kolar and Lodge 2001). Such a protocol wouldn’t replace 

current terminology, but could greatly ease confusion by supplementing terms with the 

invasion stage of interest. An example might be: “We examined distribution data to 

identify differences between invasive species (stages IVa, and V) and non-invasive 

species (stages III and IVb)”. By explicitly stating the stage of interest, it would be clear 

that the ‘invasive’ species include those that are widespread, whereas ‘non-invasive’ 

species refer to localized populations, regardless of local abundance. This model of the

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



invasion process is roughly analogous to the stages of tumour progression used in the 

cancer literature. The conceptual framework for cancer, which ranges from localized 

(stage I) to malignant and widespread (stage IV) tumour growth, is less explicit than the 

synthetic model presented here, but has undoubtedly aided in the understanding and 

treatment of cancer progression among specialists and the general public.

Besides introducing a framework for operationally important terminology, this 

invasion framework aids in conceptualizing factors that affect invasion success (i.e., 

determinants in Fig. 1). For example, the transition of propagules from introduction 

(stage II) to establishment (stage III) requires survival and reproduction in the recipient 

region. To predict success at this stage, invasion models have historically focused on 

biotic resistance of recipient communities (e.g., Elton 1958). Biotic resistance predicts 

that species interactions hinder the establishment of NIS due to the negative effects of 

predation, competition or parasitism. Thus, the C-class of determinants (Fig. 1) may have 

a negative value, indicating that biotic resistance can hinder the transition of propagules 

from introduction to establishment. Alternatively, facilitative interactions can increase 

the probability of invasion success by creating new niches (e.g., Simberloff and von Holle 

1999, Richardson et al. 2000b, Bruno et al. 2003). Therefore, the same determinants (C- 

class) may have a positive value at the same stage. Physicochemical requirements (B- 

class determinants) of the potential NIS may similarly affect establishment success either 

positively or negatively, depending on the physicochemical properties of the recipient 

environment or of the transport vector. For example, lakes with low calcium 

concentration may be relatively invulnerable to invasion by zebra mussels (Dreissena 

polymorpha), while nutrient-rich grassland habitats may foster establishment of both 

native and NIS plants (Ramcharan et al. 1992; Stohlgren et al. 1999). Finally, the
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probability of establishment success may increase with the introduction of more 

propagules (A-class), which reduces or eliminates the likelihood of Allee effects and 

stochastic extinctions (Mack 1995, Courchamp et al. 1999a, Keitt et al. 2001).

Under this framework, the designation o f ‘Stage 0’ (Fig. 1) should be reserved for 

species found in the same source region as the NIS of interest (i.e., potential introductions 

from the same source pool), thus discriminating species in the source region from species 

native to the recipient region (i.e., resident species native to the invaded region). This 

distinction is important in better conceptualizing ‘propagule biases’ that may confound 

patterns of invasion (see chapter 2).

Invasive vs. native

A focus on invasion stage also has the added benefit of stressing the view that invasions 

represent biogeographical rather than taxonomic phenomena. As such, invasion stages 

should refer to individual populations, and not entire species. Such an approach is crucial 

if invasion biology is to move beyond the current, widespread practice of contrasting 

species to identify characteristics of good invaders. Species-level analyses have provided 

valuable insights because the same species are often invasive in different parts of the 

world (i.e., invasive populations are a non-random sample of the global species pool). 

Nevertheless, a biogeographical focus is imperative because populations of the same 

species can differ in their population dynamics (Crawley 1987, Thebaud and Simberloff 

2001, Torchin et al. 2001, Leger and Rice 2003), and because determinants of invasion 

success (Fig. 1) act at the level of populations.

Processes that affect local spread and establishment in novel areas may be 

independent of species origin (i.e., native or nonindigenous). As such, stages III to V
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(Fig. 1) could be used to model three types of potential colonizers that might be available 

from a regional species pool: (i) NIS that have only recently established in the region of 

interest; (ii) NIS that have been resident for a long period of time; and (iii) native species. 

Ecologically important concepts like competition, facilitation, and disturbance may 

therefore prove useful in modelling the latter stages (III to V) of the invasion process 

where similar mechanisms operate on populations, independent of their origin or 

residence time. Alternatively, processes that are unique to the ecology of invasions by 

populations of nonindigenous species (e.g. human import preferences, survival of harsh 

transport vectors) would act at the early stages (0 ,1 and II) of the invasion process (Fig.

1).

The approach to defining NIS that I describe here still requires explicit criteria for 

‘nonindigenous’ status. Such criteria are crucial, but likely will be case-specific initially, 

and standardized criteria may prove to be a source of continued debate (e.g., Webb 1985, 

Shrader-Frechette 2001). However, this shift of focus to invasion stages renders moot the 

issue of whether the taxa involved are native regionally or originate from other 

biogeographic areas. Using this framework, even resident native species and established 

(Stage III) NIS might be modelled by the same or similar factors affecting later stages 

within a given system. Nevertheless, a consensus on operational terminology is required 

if invasion biology is to evolve into a more objective discipline.
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Table 1. List of some common terms in the English literature on invasion biology, along 

with their suggested stage(s) from Fig. 1.

Term Stage

Adventive Stage I-V

Alien Stage I-V

Casual Stage II

Colonizing Stage IVa

Cryptogenic A species whose origin is uncertain;

may be modeled as Stage III-V 

Escaped Stage II-V

Endemic Not defined by the model

Established Stage IH-V

Exotic Stage I to V

Foreign Stage I to V

Immigrant Stage I to V

Imported Stage Ito  V

Introduced Stage I to V

Invasive Stage IVa, IVb or V

Native Not defined by the model

Naturalized Stage III-V

Nonindigenous Stage I-V

Noxious Not defined by the model

Nuisance Not defined by the model

Pest Not defined by the model
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Table 1 (continued)

Spreading

Temporary

Tramp

Transferred

Transformer

Transient

Translocated

Transplanted

Transported

Waif

Weedy

Stage IVa 

Stage II

Used to describe a species that is 

widespread globally, not defined by 

the model 

Stage I-V

Not defined by the model

Stage II

Stage I-V

Stage I-V

Stage I-V

Stage II

Not defined by the model
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Figure 1. Suggested framework for defining operationally important terms in invasion 

studies (based on chapter 2). This model is based on Fig. 2 in chapter 2, but focuses 

on invasion stages.
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Chapter 4

Does the enemy release hypothesis predict invasion success?
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Abstract

A recent trend in the invasion literature relates the success of nonindigenous species 

(NIS) to the number o f co-occurring enemies (i.e., the enemy release hypothesis; ERH). 

Several case studies suggest that release from particular enemies can result in increased 

vigour or survival. However, the predictive ability of the ERH rests on four assumptions: 

(i) compared to native populations, nonindigenous populations harbour fewer co

introduced enemies; (ii) enemies already present in the invaded region will affect native 

species more than NIS; (iii) enemies co-introduced with their hosts will behave similarly 

in the invaded and source regions; and (iv) release from enemies results in increased 

fitness with a resultant advantage over native competitors. A literature review finds that 

these assumptions often do not hold true. Furthermore, the putative mechanism of enemy 

release -  bottlenecks during invasion -  implies a number of alternative scenarios that may 

have either positive or negative consequences for the host species. Taken together, these 

results suggest that loss of natural enemies attendant with biological invasion may not 

yield benefits to the host species.

Introduction

Understanding factors that affect the ability of nonindigenous species (NIS) to invade 

novel environments, where they may become widespread and abundant (i.e., invasive), 

holds important implications for both resource management and theoretical ecology. 

Perhaps the most straightforward and intuitively appealing explanation for the rapid 

establishment and proliferation of NIS is that they are introduced into environments with 

fewer natural enemies. The enemy release hypothesis (ERH) predicts that the ability of 

species to become invasive is related to the scarcity of natural enemies, whose
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introduction is limited due to bottlenecks during the invasion process (Wolfe 2002, 

Mitchell and Power 2003, Torchin et al. 2003). Enemy release permits the invader to 

allocate more resources to growth and reproduction rather than to defence or regrowth 

after attack, thereby gaining a competitive advantage over native species (Keane and 

Crawley 2002, Wolfe 2002). Herein, I define ‘host’ to include prey, and ‘enemy’ to 

describe parasites (and parasitoids), pathogens, competitors or predators.

Given the rising popularity of the ERH (Chew and Laubichler 2003), I felt it 

prudent to identify and assess some of the assumptions implicit to this hypothesis. I 

identify four key assumptions of the ERH as a predictive hypothesis and evaluate each 

using a combination of case studies and theoretical background. I also explore potential 

biases that could confound attempts to test these assumptions. Finally, I explore the 

implications of the process underlying enemy release (i.e., bottlenecks during the invasion 

process; Mitchell and Power 2003) to identify alternative scenarios that may be important 

in shaping patterns of the success and impact of NIS.

Importance of enemies

Strong evidence for the effect of some enemies on host fitness can be found among many 

case studies, particularly in the parasitological literature (Hoffman and Schubert 1984, 

Hudson et al. 1998, Torchin et al. 2001). Likewise, the overwhelming success of several 

biological control (biocontrol) agents lends evidence to the importance of particular 

enemies in controlling the population dynamics of their host (e.g., see McFadyen 1998). 

The success of biocontrol has often been cited as evidence for the ERH (DeLoach 1995). 

However, non-target effects are rarely explored (Louda et al. 2003) and biocontrol agents 

often fail to effectively control their target (OTA 1995, Williamson 1996). Even where
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successful, modem biocontrol agents are almost always specialist enemies that are chosen 

for introduction non-randomly (McFadyen 1998, Louda et al. 2003).

Inherent assumptions of the ERH

Assumption #1: Fewer co-introduced enemies

Owing to the limited number of propagules typically associated with introduction events, 

their transportation to novel environments effectively results in a sub-sampling of source 

populations, reducing the likelihood of co-introduced enemies (i.e., a founder effect; see 

colonist subsample filter, Fig. 1). The number of transported individuals that become 

introduced may be further constrained by differential mortality of infected or parasitized 

propagules (Mitchell and Power 2003, Torchin et al. 2003) and by harsh conditions 

during transport (Lavoie et al. 1999; see transport survival filter, Fig. 1). Furthermore, 

transport vectors may predispose an invader to arrive without its enemies; for example, 

invertebrate, planktonic larval stages may lack parasites associated with adults (e.g., zebra 

mussels; Molloy et al. 1997; see transport uptake filter, Fig. 1). To complete their life 

cycle, many parasites (e.g., trematodes; Combes and Le Bran 1990) require multiple host 

species, and therefore would not establish in novel habitats without alternative hosts (see 

establishment filter, Fig. 1). Finally, human selection could influence the number of 

parasites available for transfer to the new habitat. It is well established that female birds 

may preferentially select mates with low parasite burdens based on appearance (e.g., 

plumage colour). If human importers of plants or animals select colonists that are 

relatively free of parasites, then the number available for transfer to the new ecosystem 

will be correspondingly lower (see transport uptake filter, Fig. 1). Despite the intuitive 

appeal of these arguments, empirical evidence for a reduction in the number of co-
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introduced enemies was rare until recently (Dobson and May 1986, Mitchell and Power 

2003, Torchin et al. 2003). Nevertheless, empirical demonstrations of enemy release 

using measurements of parasitism, infection or predation in introduced populations 

should be viewed cautiously because patterns of enemy release may be confounded by 

biases in research effort or by the contrast group selected from the source region (see 

Poulin and Mouillot 2003).

Potential NIS and their enemies may be better studied in their native than in their 

nonindigenous ranges, and as such, more enemies would be expected in native 

populations simply due to sampling effort (Mitchell and Power 2003, Torchin et al.

2003). For example, of 26 randomly selected studies that addressed parasites of three 

globally invasive vertebrate species (i.e., rat, mosquitofish and rabbit), only 5 dealt with 

parasites found in the nonindigenous ranges (Torchin et al. 2003). Research effort and 

the likelihood of discovering parasites may, therefore, differ between native and 

introduced ranges of these species.

More importantly, accurate tests of the ERH require knowledge of the number of 

enemies in the source region. Studies that have explicitly compared range sizes with the 

number of co-occurring enemies for both nonindigenous and native populations of plant 

species have concluded that the best predictor of enemy diversity is host range 

(Southwood et al. 1982, Clay 1995). Thus, spatial variation in enemy occurrence within 

the source range may be pronounced. Since invading propagules are often drawn from a 

constrained area within their native range (Cristescu et al. 2001, Grant et al. 2001, 

Hanfling et al. 2002), the number of enemies available to be introduced to a new area 

with their hosts will be much lower than that represented by the total number available 

from across the realm (i.e., source region filter in Fig. 1). The use of cumulative numbers
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drawn from across an entire source biogeographic realm could therefore substantially 

overestimate the number of enemies available for transport to a new region. A more 

appropriate contrast would consider only those enemies found in the region from which 

the colonist population was likely drawn. Identification of invasion pathways should help 

clarify the region(s) to be considered in developing candidate lists of enemies available 

for transport to new areas (Maclsaac et al. 2001, Hanfling et al. 2002, Pollux et al. 2003).

A second sampling error derives from the limited number of founder colonists that 

are introduced. Since the initial colonists represent a subsample of the regional source 

population, a number of enemies are likely to be lost (Mitchell and Power 2003; i.e., 

colonist subsample filter, Fig. 1). Both of these cases represent a subsampling error that 

can lead to an ‘apparent’ enemy release, even if  the ‘realized’ release (i.e., the parasite 

burden on any individual) is unchanged.

Assumption #2: Limited target-switching by native enemies

In order to gain an advantage over resident native species, NIS should be less prone to 

native enemies in the invaded region than are native species. These effects are often 

difficult to quantify, although some evidence exists in support of this assumption (see 

Keane and Crawley 2002); it is, however, by no means a universal ‘rule of thumb’, as 

numerous examples exist of host-switching by native enemies (Maron and Vila 2001, 

Keane and Crawley 2002). In a study of native and invasive grasses, for example, host- 

switching resulted in more pathogens on NIS than on resident native species, in direct 

contradiction to the ERH (Clay 1995). Similarly, Agrawal and Kotanen (2003) found that 

nonindigenous species were no more resistant to a native herbivore than were native 

species.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Assumption #3: Predictable behaviour from introduced natural enemies 

Another fundamental assumption of the ERH is that co-introduced enemies will behave 

similarly in the invaded region as in their source region. However, introduced enemies 

might not focus exclusively on their co-evolved hosts. Resident native species, lacking 

adaptive experience with the introduced enemy, could be subjected to greater predation 

pressure than the NIS (see “Enemy of My Enemy” hypothesis below). Alternatively, co

introduced enemies could have a larger effect on nonindigenous populations owing to a 

loss of defences during introduction bottlenecks (see “Increased Susceptibility” 

hypothesis below). Finally, the effect of co-introduced enemies may be reduced or even 

reversed owing to biotic or abiotic differences between the native and introduced ranges 

(see “Enemy Inversion” hypothesis below).

Assumption #4: Increased fitness

Perhaps most importantly, the ERH assumes an inherent energetic cost to defending 

against enemies, and predicts that invasive species with fewer enemies grow larger or 

experience higher fitness in their nonindigenous ranges. Resources available to a plant 

are divided among growth, metabolism, reproduction, and herbivory. In the absence of 

herbivores, more resources can be directed to growth and reproduction, thereby 

bestowing apparent advantages to nonindigenous populations. Introduced individuals are 

often larger than their native counterparts (Crawley 1987, Grosholz and Ruiz 2003; but 

see Thebaud and Simberloff 2001), and there exist several reports of increased survival or 

vigour of NIS following release from some enemies (Wolfe 2002, Leger and Rice 2003, 

Mitchell and Power 2003, Torcin et al. 2003). For example, green crabs (Carcinus

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



maenus) introduced to coastal habitats in North America lack parasitic castrators 

prevalent in native European habitats, and may grow to much larger size in consequence 

(Torchin et al. 2001). However, enemies also vary widely in their effects on co-evolved 

hosts (e.g., Hawkins et al. 1997, Keane and Crawley 2002), such that the loss of some 

enemies may not have appreciable effects.

Problems with proportionality

An overall pattern consistent with enemy release may instead be an artefact of ‘propagule 

bias’. That is, apparent patterns of enemy release may result from filters acting at early 

stages of the invasion process that reduce the number of enemy propagules introduced 

(see assumption #1; also Fig. 1). To better test the ERH, an empirical relationship should 

be evident between some measure of ‘invasiveness’ (e.g., effect, distribution or 

abundance) of a species, and its release from enemies (Mitchell and Power 2003). 

However, inferring enemy release as a cause for such a relationship could prove difficult 

because qualitative and quantitative criteria for terms like ‘invasive’ and ‘nuisance’ are 

inadequately defined and may be applied disproportionately to populations of NIS than to 

native ones (Richardson et al. 2000a). Thus, a species that has the same effect on or 

propensity to invade habitats in both its native and nonindigenous range may be 

considered ‘invasive’ only among the latter. Taken with the patterns of enemy release 

expected from ‘propagule biases’ (see assumption #1 above), the most widespread NIS 

would be expected to have the greatest levels of enemy release, even though their success 

would be independent of this pattern. For example, studies of bird introductions have 

shown that species with larger native geographic range sizes are more likely to achieve
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larger range sizes at the location of introduction (Duncan et al. 1999,2001, Williamson 

2001).

A second confounding factor arises because species with more enemies are also 

more likely to have one or a few enemies with strong impacts. The remaining enemies 

may have very low impacts such that the statistical relationship is driven by the likelihood 

of having particular species of enemies rather than the number of co-occurring enemies 

per se. Similar arguments have been advanced to explain the relationship between 

species diversity and habitat productivity (Huston et al. 2000). A review by Denoth et al. 

(2002) concluded that the release of multiple biocontrol agents usually did not produce a 

cumulative effect, but increased the likelihood of introducing the ‘right’ control species.

To better explore the possibility of propagule biases, I examined nine recent 

(>1995) studies that directly tested assumptions of the ERH (Table 1). Four of these 

studies contrasted populations of NIS in their native and introduced ranges, and thus 

represent a biogeographical-level analysis of NIS populations. Consistent with the ERH, 

each study found a significant reduction in either attack intensity (Wolfe 2002), or 

number of enemies (Fenner and Lee 2001, Mitchell and Power 2003, Torchin et al. 2003). 

Conversely, five studies examined resident native and nonindigenous species within a 

given region and thus represent a community-level analysis. These studies examined 

either the number of enemy species (Clay 1995) or the level of attack by enemies (Blaney 

and Kotanen 2001a, 2001b, 2002, Agrawal and Kotanen 2003). Contrary to the ERH, 

none of the community-level studies found any difference in the level of attack by or 

number of co-occurring enemies. Thus the ERH is supported at a biogeographical but not 

at a community level. This pattern is consistent with propagule biases on the number of 

enemies. Alternatively, nonindigenous species may have fewer co-introduced enemies at
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a biogeographical level, but without any translated release from attack at the community 

level. Either way, these results underscore the importance of understanding the 

complexity of interactions that can occur as a species leaves one community and becomes 

incorporated into another.

Alternative invasion scenarios

The process by which introduced species lose their enemies (i.e., bottlenecks during the 

invasion process) has other important implications at the community level for the success 

or failure ofNIS. Below, I explore six alternative hypotheses expected to result from 

such bottlenecks (summarized in Table 2 and Fig. 2). It should be noted that of these 

hypotheses, only the EEH, EIH and EICAH (below) are truly alternate hypotheses to the 

ERH, though EICAH might also be considered a special case of the ERH.

Enemy o f my Enemy Hypothesis (EEH)

The EEH takes its name from the proverb “the enemy of my enemy is a friend of mine” 

and predicts the converse effect of enemies on co-occurring NIS. Contrary to the ERH, 

nonindigenous enemies co-introduced with their hosts could have greater effects on 

native hosts in the introduced habitat. The introduction of more enemies could, therefore, 

increase the success of the original hosts by differentially affecting native species through 

apparent competition (Hoffman and Schubert 1984, Juliano 1998, Lafferty and Gerber 

2002, Louda and O’Brien 2002; see Fig. 2). For example, introduced American crayfish 

(Pacifastacus leniusculus) carried a fungal parasite (Aphanomyces astaci) that wiped out 

most native crayfish populations in Europe (Reynolds 1988). Similarly, the on-going 

replacement of native red squirrels (Sciurus vulgaris) in the United Kingdom by
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introduced grey squirrels (Sciurus carolinensis) may be the result of enhanced 

vulnerability of the former to parapoxvirus introduced with the latter (Tompkins et al. 

2003).

Through a special form of apparent competition, termed hyperpredation 

(Courchamp et al. 1999), a well-adapted prey might sustain an introduced predator 

population as the latter exerts pressure on naive native species, potentially driving them to 

extinction. Such was the case when successive invasions of Guam brought the brown tree 

snake (.Boiga irregularis) into contact with its co-evolved lizard prey, which facilitated 

the elimination of over a dozen endemic species of birds, reptiles and bats through intense 

predation (Fritts and Rodda 1998).

Facilitator Loss Hypothesis (FLH)

The FLH is based on a growing body of evidence linking mutualistic and commensalistic 

interactions with the success ofNIS. Recent reviews indicate that positive interactions 

among NIS may be as or more important in determining invasion outcome than are 

classic biotic resistance mechanisms of the recipient community (Simberloff and von 

Holle 1999, Ricciardi 2001, Bruno et al. 2003). Additionally, Richardson et al. (2000b) 

stressed the importance of pollinators, seed dispersers, mycorrhizal fungi, and nitrogen- 

fixing bacteria to the invasion success of plants. Mechanisms responsible for introduction 

of fewer co-introduced enemies can, at the same time, result in fewer co-introduced 

facilitators. The overall success ofNIS will depend on the trade-off between the positive 

effects of losing enemies versus the negative effects of losing facilitators.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Enemy Inversion Hypothesis (EIH)

Having been released from many of the complex, multi-species interactions from their 

native region, the inversion hypotheses predict that co-introduced species (i.e., enemies or 

facilitators) will have an opposite net effect on their host species between its native and 

introduced ranges. Such an effect might arise through subtle, indirect pathways owing to 

complex species interactions in the new community. In one spectacular case, Pearson et 

al. (2000) found that larvae of two gall flies {Urophora affinis and U. quadrifasciata), 

introduced to control spotted knapweed {Centaurea maculosa), became a favoured meal 

of native deer mice {Peromyscus maniculatus), accounting for up to 84-86% of their diet. 

Mice consumed Urophora, reducing their effect to a level insufficient to adequately 

control Centaurea. Furthermore, because Urophora larvae inhabit Centaurea flower 

heads, Peromyscus inadvertently consumed fair numbers of Centaurea seeds, providing a 

novel mechanism of local dispersal by the invasive plant (Pearson et al. 2000). 

Amazingly, Pearson and Ortega (2001) later found viable Centaurea seeds in the pellets 

of Great Homed Owls {Bubo virginianus) that had apparently preyed upon Peromyscus, 

thereby providing a novel mechanism for long-distance dispersal by Centaurea.

Although Peromyscus in this example acts as a facilitator, it can still be argued that the 

Urophora species have an indirect, but net positive effect on Centaurea in the introduced 

range, despite being a “well-behaved” biocontol agent (Pearson et al. 2000).

Facilitator Inversion Hypothesis (FIH)

The FIH predicts that invasive species fail because facilitators reverse their effects on 

their co-introduced hosts. I know of no studies to support the FIH, but it is essentially the 

reverse situation of the EIH. Moreover, examples supporting the FIH would be expected
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primarily where a nonindigenous population was less successful (i.e., had lower fitness) 

than its native source, thereby decreasing the chance of establishment. Since populations 

that fail to establish are rarely studied (Kolar and Lodge 2001), failure to f in d  evidence 

for the FIH may not be surprising. Given the complexity associated with species 

interactions, such as the EIH example above, p a tter n s  of facilitator inversion are 

expected.

Increased Susceptibility Hypothesis (ISH)

The ISH predicts that when invasion bottlenecks limit the genetic diversity of 

polymorphic defences (e.g., recognition sites of the major histocompatibility complex), 

enemies will have disproportionate effects on introduced populations as compared to 

more genetically diverse native ones. Thus, factors reducing the number of co-evolved 

enemy species could also result in higher prevalence of enemies that are successfully co

introduced. Genetic bottlenecks due to founder effects have been identified in some NIS 

(Tsutsui et al. 2000, Grant et al. 2001), but not others (Holland 2001). Additionally, 

under a mechanism similar to the EEH (above), NIS represent naive hosts to native 

enemies, which can result in profound effects from native enemies, that could be further 

confounded by the loss of polymorphic defences (e.g., Creed and Sheldon 1995). 

Nonindigenous populations would therefore be subjected to greater enemy effects than 

the source population even though it would involve a smaller complement of enemy 

species. I am not aware of any studies that have looked at the possibility of increased 

susceptibility. However, Torchin et al. (2003) noted that several NIS had higher 

prevalence levels for enemies found in both native and nonindigenous ranges, although 

this difference varied by host.
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Evolution o f Increased Competitive Ability Hypothesis (EICAH)

The EICAH is quite similar to the E R H  but argues for an  evolutionary rather th an  

phenotypic response to enemy release (Blossey and N o t z o ld  1995). In plants, the EICAH 

has been favoured over the ERH for purple loosestrife (Lythrum salicaria) based on 

growth comparisons for native and nonindigenous populations grown under comparable 

conditions (Blossey and N o t z o ld  1995). However, similar e x p e r im e n ts  found little or no 

evidence for a number of other plant species (Willis et al. 2000, Leger and Rice 2003). 

The patterns consistent with the EICAH (e.g., size increase) may be further complicated 

by propagule biases during introduction. If introduced genotypes are chosen non- 

randomly or are imported from one or a few populations with divergent phenotypes, then 

introduced populations may be phenotypically different fr o m  native populations, 

independent of competitive interactions or other evolutionary mechanisms. For example, 

increased height among some nonindigenous plants may owe more to deliberate or 

inadvertent importation of large phenotypes -  and presumably genotypes -  than to the 

evolution of better competitive ability. If this were the case, increased size of individuals 

in nonindigenous relative to native populations would result fr o m  propagule bias rather 

than enemy release. Thebaud and Simberloff (2001) found that some species tended to be 

larger in their introduced ranges, while others were smaller, with no trend either way. 

Grosholz and Ruiz (2003) found evidence for a trend towards increased size in marine 

and estuarine invertebrate invaders, but were unable to identify the mechanism 

responsible for the pattern. However, enhanced size could represent a plastic response to 

enemy release (i.e., as predicted by the ERH). Identification of invasion pathways
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(Maclsaac et al. 2001) could help to identify source populations to allow for tests of 

propagule biases.

Conclusion

The idea that invasive species have few or no enemies, thereby granting NIS an “unfair 

advantage” over native species, is so intuitively appealing that it has flooded the popular 

media (Chew and Laubichler 2003). As I have shown, numerous examples exist to 

support the assertion that enemies can have profound effects on the populations of their 

hosts. Despite the growing popularity of the enemy release hypothesis, potential biases in 

apparent patterns of enemy release, combined with myriad possible species interactions, 

suggest a complex relationship between the number of enemies and the invasiveness of 

their hosts. Therefore, I caution against acceptance of the ERH without consideration of 

the entire invasion process and analysis of the mechanisms underlying invasion success. 

Even if NIS lose enemies during colonization events, a number of alternative scenarios, 

including the loss of co-evolved facilitators, of enemies that have greater effects on 

competing species, of species that switch allegiance, and of genetic diversity and its 

associated immunological response capability, render the balance unpredictable given our 

current knowledge.
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T a b l e  1. A list of recent studies that test assumptions of the Enemy Release Hypothesis (ERH).

R e f e r e n c e  

Support the ERH  

Fenner and Lee 2001 

Mitchell and Power 2003 

Torchin et al. 2003 

Wolfe 2002

Do not support ERH  

Clay 1995

Blaney and Kotanen 2001a 

Blaney and Kotanen 2001b 

Blaney and Kotanen 2002 

Agrawal and Kotanen 2003

Contrast Type

Biogeographical

Biogeographical

Biogeographical

Biogeographical

Community

Community

Community

Community

Community

Characteristic Examined

Diversity of seed predators on Asteraceae 

Diversity of viral and fungal pathogens on plant species 

Diversity of parasites on animal species

Attack by aphids, fungal pathogens, herbivores and fru it predators on 

Silene latifolia

Diversity of fungal pathogens on grass species

Attack by fungal pathogens on plant species

Attack by seed predators on plant species

Attack by seed predators and fungal pathogens on plant species

Attack by leaf herbivores on plant species
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Table 2. Scenarios resulting from bottlenecks during the invasion process. Hypotheses predict either positive (+) or negative (-) 

effects on nonindigenous relative to native host populations. Some references relevant to each hypothesis are given.

Hypothesis Effect References

ERH (Enemy Release Hypothesis) + Hoffman and Schubert 1984, Hudson et al. 1998, Fenner and Lee 2001,

Torchin et al. 2001, Wolfe 2002, Mitchell and Power 2003, Torchin et al. 

2003; but see Clay 1995, Blaney and Kotanen 2001a, 2001b, 2002, 

Agrawal and Kotanen 2003, Poulin and Mouillot 2003 

EEH (Enemy o f my Enemy Hypothesis) + Hoffman and Schubert 1984, Reynolds 1988, Juliano 1998, Lafferty and

Gerber 2002, Louda and O’Brien 2002, Tompkins et al. 2003 

FLH (Facilitator Loss Hypothesis) - no direct tests; but see Simberloff and von Holle 1999, Richardson et al.

2000b, Ricciardi 2001, Bruno et al. 2003 

EIH (Enemy Inversion Hypothesis) + Pearson et al. 2000

FIH (Facilitator Inversion Hypothesis) - no direct tests; feasible given EIH
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Table 2 (continued)

ISH (Increased Susceptibility Hypothesis)

EICAH (Evolution of Increased Competitive + 

Ability Hypothesis)

only some species in Torchin et al. 2003; circumstantial evidence from 

host-switching: Clay 1995, Creed and Sheldon 1995, Maron and Vila 

2001, Agrawal and Kotanen 2003, Keane and Crawley 2002 

Blossey and Notzold 1995; but see Willis et al. 2000, Leger and Rice 2003
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Figure. 1. Mechanisms o f apparent and realized enemy release. From right to left, 

subsampling o f the biogeographic region (source region filter), and of the actual 

source population (colonist subsample filter) result in an ‘apparent’ reduction in 

enemies (E^o) with no effect on host fitness. Transport o f a subsample of enemies 

(transport uptake filter) that may experience mortality during transport (transport 

survival filter) or establishment (establishment filter) results in a ‘realized’ reduction 

in enemies that does lead to increased fitness. Host switching by native enemies (N e i- 

12) in the introduced range can counteract the effects o f ‘realized’ enemy release, 

while still maintaining a pattern of ‘apparent’ release.
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F ig u r e . 2. Alternative scenarios for the success or failure of nonindigenous species 

(NIS). Filters acting during the invasion process reduces the number of species of 

natural enemies (Ei_4o) and facilitators (F) available to colonize a new area with host 

species A (right side). These bottlenecks may result in one of six scenarios for 

introduced populations (left side): ERH/EICAH -  a reduction in the number of 

enemies leads to increased fitness of A; EEH -  host switching by introduced enemies 

results in decreased vigour of native competitors (N) and proliferation of A; EEH -  

disruption of complex species interactions reverses the role of enemies, possibly 

through interactions with native species (N); FLH -  loss of facilitators decreases the 

vigour of A ; F IH  -  disruption of complex species interactions reverses the role of 

facilitators, possibly through interactions with native species (N ) ;  ISH -  strong effects 

by a few introduced enemies (E1-2) and by some of those already present (Ne) 

decreases the vigour of A. Relative population responses by invading species A and 

native species N are denoted by size of the corresponding circles. Strength of 

negative (-) and positive (+) species interactions are indicated by size of the 

interaction circles. See text for definitions and examples of interaction acronyms.
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Chapter 5

Microsatellite loci reveal genetic paucity in the invasive Onychopod 

Bythotrephes longimanus (Leydig)
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Abstract

The Eurasian spiny waterflea {Bythotrephes longimanus) is a prolific, voracious 

zooplankter that is rapidly invading inland waterbodies throughout the Laurentian Great 

Lakes region. I isolated microsatellite DNA loci to discriminate among nonindigenous 

populations of Bythotrephes in North America. I screened a total of 78 primers from 24 

loci, none of which showed polymorphisms among 18 individuals from nine populations, 

including one population from its native range in Eurasia. These results, combined with 

previous allozyme and mitochondrial DNA research suggest that Bythotrephes may 

represent a genetically depauperate, yet highly successful invader. If so, this species’ 

invasion pattern in the Great Lakes and in inland lakes in Ontario illustrate that high 

genetic diversity is not a prerequisite for successful invasion. It remains unclear whether 

low genetic diversity is a cause or consequence of successful biological invasions in 

Bythotrephes.

Introduction

The predatory Onychopod Bythotrephes longimanus is a widespread Palearctic species 

with an invasion history in Western Europe (Ketelaars and Gille 1994). A cederstromi 

form of B. longimanus has also been described, and is easily identified by a kink in the 

caudal process. The cederstromi form was initially considered as a distinct species, 

although it is found in sympatry with the longimanus form (see Grigorovich et al. 1998). 

However, recent genetic evidence supports a view that the two forms represent 

phenotypes of a single species, Bythotrephes longimanus (Berg et al. 2001, Therriault et 

al. 2002). Bythotrephes likely established in Great Lakes around 1982 (Johannsson et al. 

1991), and has since spread to 55 lakes in Ontario, Canada (Therriault et al. 2002;
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Maclsaac et al. 2003). To date only the cederstromi form of B. longimanus occurs 

regularly in North America, although some animals lacking caudal process kinks are 

found occasionally.

The rapid spread of Bythotrephes throughout inland lakes in Ontario owes partly 

to three key life history characteristics. First, Bythotrephes reproduces 

parthenogenetically, allowing for rapid proliferation at low population density. Second, a 

long, barbed caudal process tends to get snagged on fishing tackle and boat equipment, 

resulting in dense clusters of organisms that may be moved among lakes. Finally, 

dormant resting eggs are produced as a result of sexual reproduction. These resting eggs 

are able to survive extended periods of desiccation or ingestion by fish or birds 

(Grigorovich et al. 1998, Jamagin et al. 2000), thereby facilitating the long distance 

survival of propagules fouled on fish lines or other boat-related equipment.

The close association between recreational watercraft movement and Bythotrephes 

invasions in Ontario was demonstrated by Maclsaac et al. (2003). Using gravity models 

of boater movement, the authors were able to significantly predict the likelihood of 

invasion for several lakes in Ontario (Fig. 1). Based on the ‘propagule pressure’ 

paradigm outlined in chapter 2, the model by Maclsaac et al. (2003) should represent a 

null model for the invasion of Bythotrephes. My intention here is to use genetic markers 

to assess the relatedness of Bythotrephes populations in different Ontario lakes, and to 

compare these patterns with inter-lake movement of boaters developed in the Maclsaac et 

al. (2003) study. Having such a detailed, independent model of colonization could greatly 

improve our understanding of population-level genetic processes in natural systems, and 

allow a direct test of the vector-based (i.e. ‘propagule pressure’) dispersal model.
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Microsatellite DNA markers are non-coding regions of DNA containing a number 

of repeating motifs of 2 to 6 base pairs (bp) in length. They have been found in every 

organism examined thus far (Zane et al. 2002), and occur throughout the eukaryotic 

genome in humans and mice (Dib et al. 1996, Dietrich et al. 1996). Mutations occur often 

as replication slippage in the duplication of microsatellite DNA, thereby adding or 

deleting one or more repeat segments (Schlotterer and Tautz 1992). The resulting 

polymorphisms can be easily separated for identification using gel electrophoresis. 

Microsatellite loci require a great deal of effort to develop, but hold a number of 

advantages over other markers: First, they are generally non-coding and are thus less 

likely prone to direct selection than are mitochondrial DNA or allozyme loci (Wright and 

Bentzen 1994). Second, microsatellite analysis is a PCR-based procedure, thereby 

requiring only the minute amounts of DNA available from small organisms like 

Bythotrephes. Third, microsatellite markers are co-dominant, allowing for greater 

statistical resolution than dominant markers such as random amplified polymorphic DNA 

(RAPD) or amplified fragment length polymorphisms (AFLPs). Finally, their high 

mutation rate results in high levels of polymorphism that can be used to discriminate 

between closely related populations (Beaumont and Bruford 1999). My goal is to 

develop a number of microsatellite loci for Bythotrephes to allow for the resolution of 

genetic substructure among North American populations.

Methods

Whole genome DNA was extracted from eight individual Bythotrephes from 

Shebandowan Lake, Ontario, using Promega’s Wizard Kit®. The microsatellite isolation 

protocols that I used followed Hamilton et al. (1999), with modifications from O’Reilly et
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al. (2000). These protocols require approximately 16ug of genomic DNA, so DNA 

extracted fro m  all eight individuals was combined and precipitated using a standard salt 

precipitation procedure (60% NaOAc + 110% Isopropanol, see Sambrook et a l. 1989). I 

conducted separate enrichment procedures using (GACA)4, (AAAT)4, (AGAT)4, (A C )g , 

(ATT)4, and (AGC)4 probes. A fte r  running a double-stranding PCR on these tubes, I 

eliminated the AAAT- and ATT-enriched tubes because DNA enriched with these probes 

failed to amplify the desirable size range of DNA fragments. Enriched DNA was purified 

using micron PCR centrifugal filter tubes (Millipore), and transformed it into One Shot® 

E. coli cells using a TOPO TA Cloning® Kit (Invitrogen) or using a Promega® pGEM-T 

Vector System I with Promega®’s competent cells.

All E. coli were plated on LB agar plates prepared using protocols from Sambrook 

et al. (1989), containing lOOug/ml ampicillin, and covered with lOOpl of lOOmM IPTG 

and 20pl of 50mg/ml X-Gal. Plasmids from the transformed colonies were sub-cloned, 

isolated using an alkaline-lysis extraction protocol (Sambrook et al. 1989) and sequenced 

using a Beckman Coulter CEQ 8000 Genetic Analysis System. To increase signal 

strength, I sequenced PCR product from plasmids that had been amplified (30 cycles with 

a 58°C annealing temperature) using M13 F (5’-TTG TAA AAC GAC GGC CAG T-3’) 

and R (5’-GGA AAC AGC TAT GAC CAT G-3’) primers. To reduce stutter caused by 

the amplification of repetitive DNA, I included ImM Betaine (Promega) in each reaction. 

Sequencing reactions were generally done using M13 F except where ambiguity was 

encountered, in which case clones were again amplified using M13 F and R, but 

sequenced using M l3 R. All sequencing was performed according to protocols provided 

by Beckman Coulter, using 1/2,1/4 or 1/6 reactions.
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Primer design and testing

Primers for the inserted DNA were designed using the internet-based software PrimerS 

(Whitehead Institute for Biomedical Research) and NetPrimer (Premier Biosoft®). The 

inserted DNA, minus the SNX primers were analyzed for repeats, either visually, or using 

Alex Dong Li’s RepeatFinder (http:// www.genet.sickkids.on.ca/ ~ali/ repeatfinder.html). 

Inserts with more than three repeats of two to eight base pairs were copied into Primer3 to 

create forward and reverse primers flanking the repeating region of interest. Suggested 

primers were then evaluated with NetPrimer for secondary structure and formation of 

primer-dimer. Primers with little internal structure and low propensity to form dimers 

were ordered from IDT® or Sigma-Aldrich®.

Each primer pair was first tested with DNA from four or eight individuals in 

addition to negative (no DNA) and positive (clone plasmid DNA) controls. I used a PCR 

gradient (PTC-225, MJ Research) of four to six temperatures ranging from 12°C below to 

5°C above the calculated primer melting temperature (as calculated by the primer 

manufacturer). In this way, an optimal annealing temperature was determined for each 

primer pair. If primers did not amplify the positive control, either one, or two new 

primers were ordered. Primers that successfully amplified were used in a second PCR 

using DNA from 18 individuals from nine different populations (including one population 

from the Rybinsk Reservoir, Russia). Limited material precluded the testing of primers 

on more than two individuals from its native range. Reactions were run on either a PTC- 

225 or PTC-100 (MJ Research) PCR machine with the following program: 94°C for 2 

minutes, followed by 35 cycles of 94°C for 1 minute, optimal melting temperature for the 

particular primer for 1 minute, and 72°C for 90 seconds. These 35 cycles were followed
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by a final 5-minute step at 72°C and stored at 4°C. From this product, 10 pi were run on a 

2% high-resolution agarose gel with EtBr for 90-120 minutes to look for polymorphisms.

Results

A total of 204 transformed colonies were subcloned, of which 23 failed to amplify a 

single band with M l3 F and R (likely owing to an error during plasmid isolation) and 

were discarded. Of the 181 fragments that amplified, 37 contained inserts <150 bp and 

were thus not retained for sequencing. Only 7 sequences contained no ‘useful’ repeating 

sequences (i.e., at least three consecutive copies of a two to eight base-pair motif).

Primer design and testing

A total of 82 primers from 24 clones were developed and tested for polymorphisms, but 4 

of these did not produce at least one band, and one pair was redundant (Table 1). Not a 

single heterozygote was observed for any of the 24 loci. Some primers produced multiple 

bands at some temperatures, but these bands were likely due to mispriming or pseudo

genes, as they did not consistently produce 1 or 2 clear bands at any temperature (Table 

1). Some primers that amplified products <200 bp were prone to contamination (i.e., 

bands of equal size appeared in the negative control).

Discussion

The lack of polymorphism among the 24 microsatellite loci examined in this study 

precludes a test of the ‘propagule pressure’-based model by Maclsaac et al. (2003). 

However, these findings suggest a dearth of genetic variability in introduced populations 

of Bythotrephes. For example, several of the isolated loci, particularly Bio 4, 25,26, 31,
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33,65,115, and 158 (Table 1), contain repeat numbers similar to microsatellite loci that 

have been found to be variable in Daphnia (Ender et al. 1996), but smaller than those 

reported for Farfantenaeus notialis (Robainas et al. 2002). Given that mutation rate, and 

therefore the expected level of polymorphism, increases with repeat size (Schlotterer and 

Tautz 1992), failure to find variation at even one of these six loci suggests a genetic 

bottleneck for this species.

Only four studies have examined the genetics of Bythotrephes, all of which 

include populations in North America. Of 18 allozyme loci sampled in Weider (1991), 

Berg and Garton (1994), and Berg et al. (2001), only four were polymorphic (i.e., 

occurrence of the most common allele was <0.95): phosphoglucomutase (PGM), 

peptidase-1 (PEP-1), malic enzyme (ME), phosphoglucose isomerase (PGI). Of these, 

PGI and ME were polymorphic in one study (Berg and Garton 1994) but not another 

(Berg et al. 2001). Thus it is appears that the heretofore examined populations of 

Bythotrephes are genetically depauperate, at least with respect to nuclear markers. 

Unfortunately, all of these studies examined populations from North America or areas 

adjacent to the Baltic Sea — the putative source of North American populations (Berg and 

Garton 1994, Berg et al. 2001).

Therriault et al. (2002) found multiple mitochondrial DNA haplotypes at the COI 

region in samples o f Bythotrephes from more eastern and southern locations in Europe. 

Only a single haplotype was identified in five individuals from Lake Ontario and Lake 

Simcoe, however this haplotype was shared with two individuals from Lake Puruvesi, 

Finland. Other European populations of Bythotrephes showed deeper divergence of COI 

haplotypes. However, no studies have examined nuclear markers for Bythotrephes from 

more isolated areas of Eurasia. It is not known whether this pattern holds across the rest
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of Bythotrephes’’ native range. It is possible, for example, that populations near the Baltic 

Sea may themselves be nonindigenous, even though they have been historically present 

(Ketelaars and Gille 1994). Alternatively, genetic paucity at nuclear loci may be 

characteristic of this species, with polymorphic mtDNA haplotypes representing ancestral 

variation. Testing of the microsatellite loci published here on more isolated, native 

populations will allow for discrimination between these two hypotheses. However, low 

genetic diversity of introduced populations is consistent with the pattern of mtDNA seen 

in Bythotrephes ’ closest relative, Cercopagis pengoi (Cristescu et al. 2001). Populations 

of this species in North American and the Baltic Sea contain only a single COI haplotype, 

even though 7 haplotypes are found near the Black Sea.

It is interesting to contrast the patterns of genetic paucity observed in introduced 

populations of Bythotrephes and Cercopagis with the high genetic diversity found in 

Great Lakes’ populations of Dreissena species (Marsden et al. 1996, Stepien et al. 2002) 

and Neogobius melanostomus (Dillon and Stepien 2001). Both Dreissena and N. 

melanostomus were likely established in the Great Lakes several years after Bythotrephes. 

All species represent rapidly spreading, prolific invaders in the Great Lakes, yet the 

genetic architecture (i.e., additive genetic variance) available for selection in these species 

represents two surprising extremes.

Genetic bottlenecks have been found in many successful invaders (Tsutsui et al. 

2000, Cristescu et al. 2001, De Meester et al. 2002, Hanfling et al. 2002, Muller et al. 

2002; but see Holland 2001, Stepien et al. 2002). Although genetic bottlenecks are likely 

the result of circumstances underlying invasions (e.g., founder effects, selection for 

particular genotypes, etc.), reduction in genetic variability can have important 

consequences. For example, reduced genetic variability has been implicated in the
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success of the highly invasive Argentine ant Linepithema humile. The rapid spread and 

numerical dominance by this species has been related to a reduction in inter-colonial 

aggression as a result of the genetic similarity among introduced populations (Tsutsui et 

al. 2000). Thus, reduced genetic variability may be a cause of invasion success as well as 

a consequence of invasion circumstance.

It is not known whether the genetic paucity seen in introduced populations of 

Bythotrephes and Cercopagis is at least partially responsible for their success in the Great 

Lakes. One possibility is an invasion by particular genotypes that are somehow well 

adapted to spread to, and/or establish in, novel habitats (i.e., an ‘invasive genotype’). 

Saltonstall (2002) found evidence for a cryptic invasion by an invasive genotype of 

Phragmites australis across North America. Invasion by Bythotrephes may likewise 

represent colonisation by an invasive genotype. Alternatively, founder effects during 

Bythotrephes invasion could represent a propagule bias, such that low genetic diversity is 

merely a consequence, not a cause of invasion. Nevertheless, understanding the 

consequences of genetic bottlenecks on invasion success remains an important avenue for 

future research.
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T a b l e  1. Characterization of microsatellite primers screened for variability among 16 individuals. Four primers that did not amplify any 

product are excluded. (*) Bio 22 was a redundant locus with Bio 33. (f) Primers amplified more than two bands at some 

temperatures, likely due to mispriming or pseudogenes.

Manufacturer Primer Name Sequence (5'-3') Tm Repeat M otif

Sigma Bio 4-F CGC ACG TOT GTC TGT CTT TC 63.7 (GTCT)3(N)2(CTGT)6(N)56(TG)7

Sigma Bio 4-R GGC GGA AAT ATG CAA ATC AT 63.4 (GTCT)3(N)2(CTGT)6(N)56(TG)7

Sigma Bio 7-F+ AGC GAG CGT ACG CAG ACA 66.1 (CAGA)3(N)12(GACA)5

Sigma Bio 7-Rf GCT ATC ACA TTC GGG GTG AG 64.3 (CAGA)3(N)12(GACA)5

IDT Bio 14 Di/Tetra-F GAA GGC CCG ACG GTT GA 57.9 (CA)3(N)I2(CA)3(N)26(CAGA)4CA(CAGA)3

IDT Bio 14 Di/Tetra-R AGG ATG TGC TGT GAT TGT GC 56.9 (CA)3(N)12(CA)3(N)26(CAGA)4CA(CAGA)3

IDT B lol4-F  di CAA TGC GGT TTG AAG TGG 52.7 (CA)3(N)12(CA)3

IDT Blol4-Rdi CCC GAC GGT TGA TTA AAC A 53.6 (CA)3(N)12(CA)3

IDT BloMb-F1 GGA TGT GCT GTG ATT GTG C 55.3 (CAGA)4CA(CAGA)3

IDT BloMb-R1 TCA AAC CGC ATT GAT ATT CA 51.3 (CAGA)4CA(CAGA)3

IDT Blo20 Tetra-F TTC CAA ATT TCT TTC CGA GGT 53.8 GTCTGTTT(GTCT)3

IDT Blo20 Tetra-R CCT TAG CTC AAT CAA TTG CT 51.7 GTCTGTTT(GTCT)3

Sigma Blo21-F GGC AAA TTC AAG TTG GCA CT 63.9 (AGAC)s
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Table 1 (continued)

Sigma Blo21-R* AAC ACT CGG TCG AAC ATT CC 63.9 (AGAC)j

IDT Blo22-F* GAG CCT GGG AGG AGG TTG A 61.6 (GACA)i0GATAATAAGAGAGT(GA)10

IDT Blo22-R* GCA CAA GCC CAT AGC CTC TC 59 (GAC A) 10G AT AAT AAG AG AGT (G A) (0

IDT Blo22-R* TCT CTC TCT TAT TAT CTG 41.8 (GAC A) 10

IDT Bio24-F CTA GCA GAA GCA TCG ACG AAC 56.7 (CAG A)3/(N) 1 g/(AG AC>2

IDT Blo24-F CGA CGA ACA GGC AGA CTG A 57.8 (CAGA)3/(N),8/(AGAC)2

IDT Blo24-F tetra TTG CTA GCA GAA GCA TCG AC 56.2 (CAGA)3/(NW(AGAC)2

IDT Blo24-R TTG TCA TCT GTC TGT CTG CCT G 58.2 (CAGA)3/(N)18/(AGAC)2

IDT Blo24-R GCT TGT TTG TCT GTC ATC TGT G 55.6 (CAGA)3/(N)1s/(AGAC)2

IDT Blo24-R tetra TCT TCT GCC TGT TTG TCG TC 56.1 (CAGA)3/(N),s/(AGAC)2

IDT Blo25 150-F ACA GTG AAA CAA GCA CGT TG 55.2 (CTGT)u

IDT Blo25 150-R TGT TCT CCG ACC GAC TCT TC 57.1 (CTGT)u

IDT Blo25 220-F ACA GTG AAA CAA GCA CGT TG 55.2 (CTGT)n

IDT Blo25 220-R TGC ACC ACT TTA TTC CCA TGT 56.1 (CTGT)n

IDT Blo25 290-FT ACA GTG AAA CAA GCA CGT TG 55.2 (CTGT),,

IDT Blo25 290-RT GCT AGC AGA AGC GCA AAG AT 56.9 (CTGT)n

IDT Blo26-F CTT GAT GTG AGC CCA TTG A 53.5 (CTGT)7
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Table 1 (continued)

IDT Blo26-F TGT ACA TTC ATG CAA TTT TTA TTC A 52 (CTGT)7

IDT Blo26-R ATG TTT CCC TGT TAT CTT GAA GT 53.8 (CTGT)7

IDT Blo26-R CAT GTT TCC CTG TTA TCT TGA AGT 54.8 (CTGT)7

IDT Blo29 111-F AGC TTA TTA CGG TCT TTA ATT ATT ACT 52.4 (TGTCTGCC)6

IDT Blo29 129-F AGC AAT AGC AAA CAC TCT AGC 54.2 (TGTCTGCC)6

IDT Blo29-F GAA GCA GCA ATA GCA AAC AC 53.6 (TGTCTGCC)6

IDT Blo29-R GCA GAA GCA GAC AGA CAG AC 56.4 (TGTCTGCQs

IDT Blo29-R AGA CAG ACA GAC AGG CAG 54.3 (TGTCTGCC)6

Sigma Blo31 105-F TGA AGT ATC ACC TGA AAG ACT TG 53.9 (TCT G)4(N)35(CT GT) j

IDT Blo31 120-F CCT GCA TTC ACT AAC TGA AGT ATC A 56.4 (TCTG)4(N)35(CTGT)5

IDT Blo31-F GTG TCT GTC TTT ATT TCT CTC TG 52.2 (TCTG)4(N)35(CTGT)j

IDT BIo31-R TGA GAC GAG TAG GCA AGA CA 56.3 (TCTG)4(N)35(CTGT)5

Sigma Blo31-R AGA GGC AGA CAG AGA GAA ATA AA 54.9 (TCTG)4(N)3j(CTGT)5

IDT Blo33 100-R* CGA CTC ATC CAG CGT GTG 56.2 (GACA)9(N)16(GA),o

IDT Blo33 125-R* CCT AAA CCA TCC TCT TCG TG 53.5 (GACA)9(N)16(GA),o

IDT Blo33-F* CAG AAG CCC ATA GGC TCA TA 54.8 (GACA)9(N) i6<G A) io

IDT Blo33-F* AGT AAG CGC ACA AGC CCA TA 58 (GACA)9(N)16(GA)io
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Table 1 (continued)

IDT Blo33-R* ACC TAA ACC ATC CTC TTC GTG 55.4 (GACA)9(N),6(GA)10

IDT Blo34 b-F CAA CGC TGG CGG TAA TTG 55.2 GTTT(GTCT)3(GTTT)2

IDT Blo34 b-R TCC CTT TAA ATA GCC CGA ATG 53.8 GTTT(GTCT)3(GTTT)2

IDT Blo34-F GTA ATT GGA CCG TGA ATG ACA 54.1 GTTT(GTCT)3(GTTT)2

IDT Blo34-F GGT AAT TGG ACC GTG AAT GA 53.5 GTTT (GTCT)3(GTTT)2

IDT Blo34-R GCC CGA ATG TAT CAA CTG G 54.1 GTTT(GTCT)3(GTTT)2

IDT Blo34-R CTT CCC TTT AAA TAG CCC GAA T 54.1 GTTT(GTCT)3(GTTT)2

IDT Blo35 Tetra-F CTT CCC TTT AAA TAG CCC GAA T 54.1 (CAAA)3(CAGA)3CAAACAGA

IDT Blo35 Tetra-R CGG TAA TTG GAC CGT GAA TG 54.7 (CAAA)3(CAGA)3CAAACAGA

Sigma Blo38-F TGA TGT GGA TGG CAT GTT TT 63.8 (GACACACA)2(N )17(GACA)2

Sigma Blo38-R TCT GTC TAT ACT GTC TGC TTG TCA G 61.4 (GACACACA)2(N)17(GACA)2

IDT Blo42-F CCG OTA GGA CAA CAG AAC AA 55.9 (CTGT)9

IDT Blo42-R ATC TGT CCG TCC GTT CGT 56.7 (CTGT)9

IDT Blo58 119-Ff GAG AAG TAG CAG CGG CAT C 56.4 minisat? - (TCAACAGCAGCAGCA)3

IDT Blo58 119-Rf GCA CTG CTG TTG CTG ACG 57.7 minisat? - (TCAACAGCAGCAGCA)3

IDT Blo58 143-F ACA GCA GTA TTA CCA GTC CCT GA 59 minisat? - (TCAACAGCAGCAGCA)3

IDT Blo58 143-R TAG CCT GCT GTT GCT GAC G 58.5 minisat? - (TCAACAGCAGCAGCA)3
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Figure 1. Putative sequence and sources of Ontario inland lake invasions by Bythotrephes 

longimanus between 1989 (left side) and 2001 (right side) taken from Maclsaac et al. 

(2003). The magnitude of an invasion vector is directly related to arrow thickness. 

This vector-based model represents measurements of migration that could be 

contrasted with genetic calculations of gene flow.
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Conclusion

The present thesis is grounded in the premise that ‘propagule pressure’ is a poorly 

explored paradigm with a potential to confound current patterns and paradigms in 

invasion biology (e.g., the widespread success of some species, the ‘enemy release 

hypothesis’, etc.). As such, it should act as a basis for a reformulation of the protocols 

and procedures by which scientists investigate determinants of invasion success. Such an 

approach could produce new insights, and might help to disentangle some of the 

contradictory patterns reported in the literature (reviewed in chapter 2). At the very least, 

an explicit examination of propagule pressure-based hypotheses will help to identify 

potentially confounding factors such as the ‘apparent’ vs. ‘realized’ patterns of enemy 

release identified in chapter 4. Beyond a propagule pressure-based framework, a clearly 

defined, universally excepted lexicon like the one proposed in chapter 3 would also 

greatly improve our ability to generalize invasion phenomena. Finally, a shift in current 

thinking is needed -  one that focuses on invasions as a biogeographical, rather than a 

taxonomic, phenomenon. A universal understanding of the circumstances underlying 

anthropogenic movement of species across historical barriers, and of the interactions 

between species and human activity in general, could go a long way toward improving 

our management and understanding of ‘invasive’ species.

Perhaps there is a lesson for all of ecology in the flaws of invasion biology.

Instead of trekking tens of thousands of kilometres to study pristine ecosystems that have 

been largely inaccessible to man, we should focus heavily on the science of interaction 

between natural processes and human activities. Instead of seeking simple relationships 

in the isolated, equilibrial systems constructed largely in the mind’s eye, we should 

explore the non-linearity of ecosystems, and the effect of constant human perturbation. In
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short, ecology should become the study of ecosystems and ecological processes in the 

context of an interactive biosphere in which humans are participants, not passive 

observers. Of course, modem ecology has come a long way in this respect; disciplines 

like ecotoxicology are integrations of ecological processes with human activities. 

However, the fundamental paradigms of ecology -  theories like the niche, optimality, 

biotic resistance and facilitation, even island biogeography -  all remain largely mired in 

the equilibrial assumptions of ecology past. Given the current rates of human over

consumption, and its resulting stress on natural resources, ecology will likely become the 

most important science discipline of the 21st century. I hope the time has come to 

transform ecology into a science that provides useful solutions to the problems of the 

future, rather than remaining a discipline that describes, in painstaking detail, the 

phenomena of the past.
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Appendix 1. Search string, and list of journals searched for characteristics of invaders 

and habitats susceptible to invasions.

Keywords: (NIS or invasive species or nonindigenous species or alien species or exotic 

species or non-native species or introduced species or invasiveness or invasibility) or 

invaded and (habitat* or communit* or ecosystem*)
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BIOLOGICAL JOURNAL OF T H E  LINNEAN SOCIETY

BIOLOGICAL REVIEWS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY
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CANADIAN JOURNAL OF ANIMAL SCIENCE

CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES

CONSERVATION BIOLOGY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ECOGRAPHY

ECOLOGICAL APPLICATIONS 
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ENVIRONMENTAL CONSERVATION 

ENVIRONMENTAL ENTOMOLOGY 

EVOLUTION

EVOLUTIONARY BIOLOGY 

EVOLUTIONARY ECOLOGY 

EVOLUTIONARY ECOLOGY RESEARCH 

EVOLUTIONARY TRENDS IN PLANTS 

FRESHWATER BIOLOGY 

GLOBAL ECOLOGY AND BIOGEOGRAPHY 

IBIS

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I N T E R N A T I O N A L  JOURNAL OF PLANT SCIENCES 

J O U R N A L  O F  A N I M A L  E C O L O G Y  

JOURNAL OF BIOGEOGRAPHY 

JOURNAL OF GREAT LAKES RESEARCH 

JOURNAL OF TROPICAL ECOLOGY 

LIMNOLOGY AND OCEANOGRAPHY 

NEW ZEALAND JOURNAL OF BOTANY 

NEW ZEALAND JOURNAL OF ECOLOGY

NEW ZEALAND JOURNAL OF MARINE AND FRESHWATER RESEARCH

NORTHEASTERN NATURALIST

OECOLOGIA

OIKOS

SOUTH AFRICAN JOURNAL OF SCIENCE 

TRENDS IN ECOLOGY & EVOLUTION

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



R
eproduced 

with 
perm

ission 
of the 

copyright ow
ner. 

Further reproduction 
prohibited 

w
ithout perm

ission.

Appendix 2A. Summary of studies reporting characteristics of invasiveness. Characteristics identified: 0 -  propagule pressure, 1 -  

taxonomic over-representation, 2 -  physiological tolerance, 3 -  body size, 4 -  growth rate, 5 -  generation time, 6 -  invasion 

history/widespread, 7 — germination/hatch success or rate, 8 — seed/egg size, 9 — reproductive output, 10 -  consumption efficiency, 

11 -  length of growing/breeding season, 12 -  hermaphroditic/asexual reproduction

Trait

Comparison type Authors 0 1 2 3 4 5 6 7 8 9 10 11 12

Plants

established/introduced Reichard and Hamilton 1997 + +

established/introduced Rejmanek and Richardson 1996 + - .

established/introduced Fine 2002 -

invasive/non-invasive Perrins et al 1993 +

invasive/non-invasive Thebaud et al 1996 -b

invasive/non-invasive Richardson 1998 + - -

invasive/non-invasive Gerlach and Rice 2003 n.d. +

invasive/non-invasive Smith and Knapp 2001

NIS/native Smith and Knapp 2001 +
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NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

NIS/native

Mesleard et al 1993 

Baruch and Goldstein 1999 

Cadotte and Lovett-Doust 2002 

Daehler 2001 

Luken et al 1997 

Noe 2002

Radford and Cousens 2000 

Radho-Toly et al 2001 

Schierenbeck et al 1994 

Smith et al 1999 

Weber 1997

Williamson and Fitter 1996 

van Clef and Stiles 2001 

Vila and D'Antonio 1998 

Horvitz et al 1998 

Levine 2001 

Craine and Lee 2003 

Leger and Rice 2003
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+
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+ +

+
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+

+

+

+

+

+

+
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NIS/native worldwide 
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Allcock 2002 
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Goodwin et al 1999 

Grotkopp et al 2002 

McDowell and Turner 2002 
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Appendix 2B. Summary of studies reporting characteristics of invasibility. Characteristics 

identified: 0 - propagule pressure, 0/1 - anthropogenic activity, 1 -  disturbance, 2 -  

nutrient levels, 3 -  resident species diversity, 4 -  resident species abundance/density.

Trait

Authors NIS comparison 0 0/1 1 2 3

Terrestrial Plants

Anderson and Inouye 2001 Abundance

Davis et al 2000 Abundance + +

Dukes 2002 Abundance n.d.

Horvitz et al 1998 Abundance +

Hutchinson and Vankat 1997 Abundance + -

Parker et a ll993 Abundance

Prieur-Richard et al 2000 Abundance .

Rose et al 1998 Abundance -

Prieur-Richard et al. 2002 Abundance

Wilsey and Polley 2002 Abundance +

Davis and Pelsor 2001 Abundance and +

Survivorship

Brothers and Spingam 1992 Diversity +

Burke and Grime 1996 Diversity + +

Cabin et al 2002 Diversity

Cadotte and Lovett-Doust 2002 Diversity +

Corlett 1992 Diversity + +

Cumutt 2000 Diversity

Fensham and Cowie 1998 Diversity + -f 4* -

Harrison 1999 Diversity +
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Higgins et al 1999 Diversity +

King and Buckney 2002 Diversity +

Knops et al 1995 Diversity +

Larson et al 2001 Diversity +

Lonsdale 1999 Diversity +

McIntyre 1994 Diversity +

McIntyre 2001 Diversity +/n.d +/n.d.

Parendes and Jones 2000 Diversity +

Pyiek et al 2002 Diversity +

Roy et al 1999 Diversity +

Safford and Harrison 2001 Diversity - -

Smith and Haukos 2002 Diversity +

Stadler et al 2000 Diversity

Stohlgren et al 1999a Diversity + -/+

Stohlgren et al 1999b Diversity + + +

Symstad 2000 Diversity -

Vila and Pujadas 2001 Diversity -i-

Williamson and Harrison 2002 Diversity + +

PlantyTabacchi et al 1996 Diversity + + +

Lonsdale and Lane 1994 Diversity +

Frenot et al 2001 Diversity +

Harrison et al 2003 Diversity

Teo et al. 2003 Diversity + n.d.

Levine and D'Antonio 2003 Diversity +

Brown and Peet 2003 Diversity +/-

Bowles et al. 2003 Diversity + -

Foster et al. 2002 Diversity + n.d.

Gabriel et al 2001 Diversity and + + n.d
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Harrison et al 2001
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Watkins et al. 2003 
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Abundance
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Abundance

Diversity and

Abundance
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Abundance

Diversity and

Abundance

Diversity and

Abundance

Diversity and

Abundance

Diversity and

Abundance

Presence

Presence

Presence

Presence

Presence

Presence

Presence and

Abundance

Presence and

Abundance

Survivorship

Survivorship

Seed Diversity

+ + +

n.d.

+
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Aquatic plants 

Buchan and Padilla 2000

Birds 
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Sol 2000

Fishes
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Fausch et al 2001 

Marchetti and Moyle 2001
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Invertebrates/microorganisms 
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Stachowicz et al 2002

Drake et al 1993
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Abundance 

Diversity

Survivorship 

Survivorship 

Survivorship and 

Abundance

Order o f Establishment 
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Abundance

n.d. + +

+

+

/n.d.

+ n.d.

+

n.d,

Multiple fauna
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Chown et al 1998 Diversity +b +s +b +s
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