45 research outputs found

    The conventional gait model - success and limitations

    Get PDF
    The Conventional Gait Model (CGM) is a generic name for a family of closely related and very widely used biomechanical models for gait analysis. After describing its history, the core attributes of the model are described followed by evaluation of its strengths and weaknesses. An analysis of the current and future requirements for practical biomechanical models for clinical and other gait analysis purposes which have been rigorously calibrated suggests that the CGM is better suited for this purpose than any other currently available model. Modifications are required, however, and a number are proposed

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Is There an Economical Running Technique? A Review of Modifiable Biomechanical Factors Affecting Running Economy

    Get PDF

    ISRIA statement: ten-point guidelines for an effective process of research impact assessment

    No full text
    As governments, funding agencies and research organisations worldwide seek to maximise both the financial and non-financial returns on investment in research, the way the research process is organised and funded is becoming increasingly under scrutiny. There are growing demands and aspirations to measure research impact (beyond academic publications), to understand how science works, and to optimise its societal and economic impact. In response, a multidisciplinary practice called research impact assessment is rapidly developing. Given that the practice is still in its formative stage, systematised recommendations or accepted standards for practitioners (such as funders and those responsible for managing research projects) across countries or disciplines to guide research impact assessment are not yet available. In this statement, we propose initial guidelines for a rigorous and effective process of research impact assessment applicable to all research disciplines and oriented towards practice. This statement systematises expert knowledge and practitioner experience from designing and delivering the International School on Research Impact Assessment (ISRIA). It brings together insights from over 450 experts and practitioners from 34 countries, who participated in the school during its 5-year run (from 2013 to 2017) and shares a set of core values from the school’s learning programme. These insights are distilled into ten-point guidelines, which relate to (1) context, (2) purpose, (3) stakeholders’ needs, (4) stakeholder engagement, (5) conceptual frameworks, (6) methods and data sources, (7) indicators and metrics, (8) ethics and conflicts of interest, (9) communication, and (10) community of practice. The guidelines can help practitioners improve and standardise the process of research impact assessment, but they are by no means exhaustive and require evaluation and continuous improvement. The prima facie effectiveness of the guidelines is based on the systematised expert and practitioner knowledge of the school’s faculty and participants derived from their practical experience and research evidence. The current knowledge base has gaps in terms of the geographical and scientific discipline as well as stakeholder coverage and representation. The guidelines can be further strengthened through evaluation and continuous improvement by the global research impact assessment community

    ISRIA statement: ten-point guidelines for an effective process of research impact assessment

    No full text
    As governments, funding agencies and research organisations worldwide seek to maximise both the financial and non-financial returns on investment in research, the way the research process is organised and funded is becoming increasingly under scrutiny. There are growing demands and aspirations to measure research impact (beyond academic publications), to understand how science works, and to optimise its societal and economic impact. In response, a multidisciplinary practice called research impact assessment is rapidly developing. Given that the practice is still in its formative stage, systematised recommendations or accepted standards for practitioners (such as funders and those responsible for managing research projects) across countries or disciplines to guide research impact assessment are not yet available. In this statement, we propose initial guidelines for a rigorous and effective process of research impact assessment applicable to all research disciplines and oriented towards practice. This statement systematises expert knowledge and practitioner experience from designing and delivering the International School on Research Impact Assessment (ISRIA). It brings together insights from over 450 experts and practitioners from 34 countries, who participated in the school during its 5-year run (from 2013 to 2017) and shares a set of core values from the school’s learning programme. These insights are distilled into ten-point guidelines, which relate to (1) context, (2) purpose, (3) stakeholders’ needs, (4) stakeholder engagement, (5) conceptual frameworks, (6) methods and data sources, (7) indicators and metrics, (8) ethics and conflicts of interest, (9) communication, and (10) community of practice. The guidelines can help practitioners improve and standardise the process of research impact assessment, but they are by no means exhaustive and require evaluation and continuous improvement. The prima facie effectiveness of the guidelines is based on the systematised expert and practitioner knowledge of the school’s faculty and participants derived from their practical experience and research evidence. The current knowledge base has gaps in terms of the geographical and scientific discipline as well as stakeholder coverage and representation. The guidelines can be further strengthened through evaluation and continuous improvement by the global research impact assessment community
    corecore