126 research outputs found

    Inhibition of Y1 receptor signaling improves islet transplant outcome

    Get PDF
    Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in Ξ²-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in Ξ²-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in Ξ²- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0MβŠ™1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0MβŠ™1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Patient-derived mutations within the N-terminal domains of p85Ξ± impact PTEN or Rab5 binding and regulation

    Get PDF
    The p85Ξ± protein regulates flux through the PI3K/PTEN signaling pathway, and also controls receptor trafficking via regulation of Rab-family GTPases. In this report, we determined the impact of several cancer patient-derived p85Ξ± mutations located within the N-terminal domains of p85Ξ± previously shown to bind PTEN and Rab5, and regulate their respective functions. One p85Ξ± mutation, L30F, significantly reduced the steady state binding to PTEN, yet enhanced the stimulation of PTEN lipid phosphatase activity. Three other p85Ξ± mutations (E137K, K288Q, E297K) also altered the regulation of PTEN catalytic activity. In contrast, many p85Ξ± mutations reduced the binding to Rab5 (L30F, I69L, I82F, I177N, E217K), and several impacted the GAP activity of p85Ξ± towards Rab5 (E137K, I177N, E217K, E297K). We determined the crystal structure of several of these p85Ξ± BH domain mutants (E137K, E217K, R262T E297K) for bovine p85Ξ± BH and found that the mutations did not alter the overall domain structure. Thus, several p85Ξ± mutations found in human cancers may deregulate PTEN and/or Rab5 regulated pathways to contribute to oncogenesis. We also engineered several experimental mutations within the p85Ξ± BH domain and identified L191 and V263 as important for both binding and regulation of Rab5 activit

    PIK3CA dependence and sensitivity to therapeutic targeting in urothelial carcinoma

    Get PDF
    Background Many urothelial carcinomas (UC) contain activating PIK3CA mutations. In telomerase-immortalized normal urothelial cells (TERT-NHUC), ectopic expression of mutant PIK3CA induces PI3K pathway activation, cell proliferation and cell migration. However, it is not clear whether advanced UC tumors are PIK3CA-dependent and whether PI3K pathway inhibition is a good therapeutic option in such cases. Methods We used retrovirus-mediated delivery of shRNA to knock down mutant PIK3CA in UC cell lines and assessed effects on pathway activation, cell proliferation, migration and tumorigenicity. The effect of the class I PI3K inhibitor GDC-0941 was assessed in a panel of UC cell lines with a range of known molecular alterations in the PI3K pathway. Results Specific knockdown of PIK3CA inhibited proliferation, migration, anchorage-independent growth and in vivo tumor growth of cells with PIK3CA mutations. Sensitivity to GDC-0941 was dependent on hotspot PIK3CA mutation status. Cells with rare PIK3CA mutations and co-occurring TSC1 or PTEN mutations were less sensitive. Furthermore, downstream PI3K pathway alterations in TSC1 or PTEN or co-occurring AKT1 and RAS gene mutations were associated with GDC-0941 resistance. Conclusions Mutant PIK3CA is a potent oncogenic driver in many UC cell lines and may represent a valuable therapeutic target in advanced bladder cancer

    Protective Unfolded Protein Response in Human Pancreatic Beta Cells Transplanted into Mice

    Get PDF
    Background: There is great interest about the possible contribution of ER stress to the apoptosis of pancreatic beta cells in the diabetic state and with islet transplantation. Methods and Findings: Expression of genes involved in ER stress were examined in beta cell enriched tissue obtained with laser capture microdissection (LCM) from frozen sections of pancreases obtained from non-diabetic subjects at surgery and from human islets transplanted into ICR-SCID mice for 4 wk. Because mice have higher glucose levels than humans, the transplanted beta cells were exposed to mild hyperglycemia and the abnormal environment of the transplant site. RNA was extracted from the LCM specimens, amplified and then subjected to microarray analysis. The transplanted beta cells showed an unfolded protein response (UPR). There was activation of many genes of the IRE-1 pathway that provide protection against the deleterious effects of ER stress, increased expression of ER chaperones and ERAD (ER-associated protein degradation) proteins. The other two arms of ER stress, PERK and ATF-6, had many down regulated genes. Downregulation of EIF2A could protect by inhibiting protein synthesis. Two genes known to contribute to apoptosis, CHOP and JNK, were downregulated. Conclusions: Human beta cells in a transplant site had UPR changes in gene expression that protect against the proapoptotic effects of unfolded proteins

    Key signalling nodes in mammary gland development and cancer. Signalling downstream of PI3 kinase in mammary epithelium: a play in 3 Akts

    Get PDF
    The protein serine/threonine kinase Akt, also known as protein kinase B (PKB), is arguably the most important signalling nexus in the cell. Akt integrates a plethora of extracellular signals to generate diverse outcomes, including proliferation, motility, growth, glucose homeostasis, survival, and cell death. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway is the second most frequently mutated pathway in cancer, after p53, and mutations in components of this pathway are found in around 70% of breast cancers. Thus, understanding how Akt relays input signals to downstream effectors is critically important for the design of therapeutic strategies to combat breast cancer. In this review, we will discuss the various signals upstream of Akt that impact on its activity, how Akt integrates these signals and modulates the activity of downstream targets to control mammary gland development, and how mutations in components of the pathway result in breast cancer

    Multi-Level Targeting of the Phosphatidylinositol-3-Kinase Pathway in Non-Small Cell Lung Cancer Cells

    Get PDF
    Introduction: We assessed expression of p85 and p110a PI3K subunits in non-small cell lung cancer (NSCLC) specimens and the association with mTOR expression, and studied effects of targeting the PI3K/AKT/mTOR pathway in NSCLC cell lines. Methods: Using Automated Quantitative Analysis we quantified expression of PI3K subunits in two cohorts of 190 and 168 NSCLC specimens and correlated it with mTOR expression. We studied effects of two PI3K inhibitors, LY294002 and NVP-BKM120, alone and in combination with rapamycin in 6 NSCLC cell lines. We assessed activity of a dual PI3K/mTOR inhibitor

    A Gain-of-Function Germline Mutation in Drosophila ras1 Affects Apoptosis and Cell Fate during Development

    Get PDF
    The RAS/MAPK signal transduction pathway is an intracellular signaling cascade that transmits environmental signals from activated receptor tyrosine kinases (RTKs) on the cell surface and other endomembranes to transcription factors in the nucleus, thereby linking extracellular stimuli to changes in gene expression. Largely as a consequence of its role in oncogenesis, RAS signaling has been the subject of intense research efforts for many years. More recently, it has been shown that milder perturbations in Ras signaling during embryogenesis also contribute to the etiology of a group of human diseases. Here we report the identification and characterization of the first gain-of-function germline mutation in Drosophila ras1 (ras85D), the Drosophila homolog of human K-ras, N-ras and H-ras. A single amino acid substitution (R68Q) in the highly conserved switch II region of Ras causes a defective protein with reduced intrinsic GTPase activity, but with normal sensitivity to GAP stimulation. The ras1R68Q mutant is homozygous viable but causes various developmental defects associated with elevated Ras signaling, including cell fate changes and ectopic survival of cells in the nervous system. These biochemical and functional properties are reminiscent of germline Ras mutants found in patients afflicted with Noonan, Costello or cardio-facio-cutaneous syndromes. Finally, we used ras1R68Q to identify novel genes that interact with Ras and suppress cell death
    • …
    corecore