1,818 research outputs found

    Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus.

    Get PDF
    Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as β-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101) and MRSA (n = 115). Minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The effects of combining plectasin with β-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI), plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin) displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with β-lactams (penicillin, amoxicillin or flucloxacillin) in 87-89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA infections. We demonstrated that plectasin strongly rejuvenates the therapeutic potencies of existing antibiotics in vitro and in vivo. This is a novel strategy that can have major clinical implications in our fight against bacterial infections

    A bi-directional relationship between obesity and health-related quality of life : evidence from the longitudinal AusDiab study

    Full text link
    Objective: To assess the prospective relationship between obesity and health-related quality of life, including a novel assessment of the impact of health-related quality of life on weight gain.Design and setting: Longitudinal, national, population-based Australian Diabetes, Obesity and Lifestyle (AusDiab) study, with surveys conducted in 1999/2000 and 2004/2005.Participants: A total of 5985 men and women aged 25 years at study entry.Main outcome measure(s): At both time points, height, weight and waist circumference were measured and self-report data on health-related quality of life from the SF-36 questionnaire were obtained. Cross-sectional and bi-directional, prospective associations between obesity categories and health-related quality of life were assessed.Results: Higher body mass index (BMI) at baseline was associated with deterioration in health-related quality of life over 5 years for seven of the eight health-related quality of life domains in women (all P0.01, with the exception of mental health, P&gt;0.05), and six out of eight in men (all P&lt;0.05, with the exception of role-emotional, P=0.055, and mental health, P&gt;0.05). Each of the quality-of-life domains related to mental health as well as the mental component summary were inversely associated with BMI change (all P&lt;0.0001 for women and P0.01 for men), with the exception of vitality, which was significant in women only (P=0.008). For the physical domains, change in BMI was inversely associated with baseline general health in women only (P=0.023).Conclusions: Obesity was associated with a deterioration in health-related quality of life (including both physical and mental health domains) in this cohort of Australian adults followed over 5 years. Health-related quality of life was also a predictor of weight gain over 5 years, indicating a bi-directional association between obesity and health-related quality of life. The identification of those with poor health-related quality of life may be important in assessing the risk of future weight gain, and a focus on health-related quality of life may be beneficial in weight management strategies.<br /

    Prozone effect of serum IgE levels in a case of plasma cell leukemia

    Get PDF
    We describe a case of multiple myeloma (MM) and secondary plasma cell leukemia (PCL) secreting IgE-kappa immunoglobulin. To our knowledge, only 2 cases of IgE-producing secondary PCL have been reported in the medical literature. In our patient, the only tumor marker available for monitoring the therapeutic response to chemotherapy and allogeneic stem cell transplantation was the quantitative M component at serum protein electrophoresis (SPEP), because serum free light chains were in the normal range, Bence-Jones proteinuria was absent, and quantitative serum IgE levels provided inaccurate and erratic results, due to the prozone effect. This is a laboratory phenomenon that occurs when antigen excess interferes with antibody-based methods requiring immune complex formation for detection. It is important to recognize the presence of a prozone effect, because it can produce falsely normal results, and therefore it could lead clinicians to incorrect assessment of the response to therapy

    Hand-held echocardiography: added value in clinical cardiological assessment

    Get PDF
    BACKGROUND: The ultrasonic industry has recently produced echocardiographic Hand Held Devices (miniaturized, compact and battery-equipped echocardiographic systems). Their potential usefulness has been successfully assessed in a wide range of clinical conditions. The aim of the study was to verify if the routine use of a basic model of echocardiographic Hand Held Device (HHD) could be an important diagnostic tool during outpatient cardiologic consulting or in non-cardiologic hospital sections. METHODS: 87 consecutive patients were included in this study; they underwent routine physical examination, resting ECG and echocardiographic evaluation using a basic model of HHD performed by trained echocardiographists; the cardiologist, whenever possible, formulated a diagnosis. The percentage of subjects in whom the findings were judged reasonably adequate for final diagnostic and therapeutic conclusions was used to quantify the "conclusiveness" of HHD evaluation. Successively, all patients underwent a second echocardiographic evaluation, by an examiner with similar echocardiographic experience, performed using a Standard Echo Device (SED). The agreement between the first and the second echocardiographic exam was also assessed. RESULTS: Mean examination time was 6.7 ± 1.5 min. using HHD vs. 13.6 ± 2.4 min. using SED. The echocardiographic examination performed using HHD was considered satisfactory in 74/87 patients (85.1% conclusiveness). Among the 74 patients for whom the examination was conclusive, the diagnosis was concordant with that obtained with the SED examination in 62 cases (83.8% agreement). CONCLUSION: HHD may generally allow a reliable cardiologic basic evaluation of outpatient or subjects admitted to non-cardiologic sections, more specifically in particular subgroups of patients, with a gain in terms of time, shortening patient waiting lists and reducing healthy costs

    The influence of speed and size on avian terrestrial locomotor biomechanics: predicting locomotion in extinct theropod dinosaurs

    Get PDF
    How extinct, non-avian theropod dinosaurs moved is a subject of considerable interest and controversy. A better understanding of non-avian theropod locomotion can be achieved by better understanding terrestrial locomotor biomechanics in their modern descendants, birds. Despite much research on the subject, avian terrestrial locomotion remains little explored in regards to how kinematic and kinetic factors vary together with speed and body size. Here, terrestrial locomotion was investigated in twelve species of ground-dwelling bird, spanning a 1,780-fold range in body mass, across almost their entire speed range. Particular attention was devoted to the ground reaction force (GRF), the force that the feet exert upon the ground. Comparable data for the only other extant obligate, striding biped, humans, were also collected and studied. In birds, all kinematic and kinetic parameters examined changed continuously with increasing speed, while in humans all but one of those same parameters changed abruptly at the walk-run transition. This result supports previous studies that show birds to have a highly continuous locomotor repertoire compared to humans, where discrete ‘walking’ and ‘running’ gaits are not easily distinguished based on kinematic patterns alone. The influences of speed and body size on kinematic and kinetic factors in birds are developed into a set of predictive relationships that may be applied to extinct, non-avian theropods. The resulting predictive model is able to explain 79–93% of the observed variation in kinematics and 69–83% of the observed variation in GRFs, and also performs well in extrapolation tests. However, this study also found that the location of the whole-body centre of mass may exert an important influence on the nature of the GRF, and hence some caution is warranted, in lieu of further investigation

    Reconstructing the three-dimensional GABAergic microcircuit of the striatum

    Get PDF
    A system's wiring constrains its dynamics, yet modelling of neural structures often overlooks the specific networks formed by their neurons. We developed an approach for constructing anatomically realistic networks and reconstructed the GABAergic microcircuit formed by the medium spiny neurons (MSNs) and fast-spiking interneurons (FSIs) of the adult rat striatum. We grew dendrite and axon models for these neurons and extracted probabilities for the presence of these neurites as a function of distance from the soma. From these, we found the probabilities of intersection between the neurites of two neurons given their inter-somatic distance, and used these to construct three-dimensional striatal networks. The MSN dendrite models predicted that half of all dendritic spines are within 100 mu m of the soma. The constructed networks predict distributions of gap junctions between FSI dendrites, synaptic contacts between MSNs, and synaptic inputs from FSIs to MSNs that are consistent with current estimates. The models predict that to achieve this, FSIs should be at most 1% of the striatal population. They also show that the striatum is sparsely connected: FSI-MSN and MSN-MSN contacts respectively form 7% and 1.7% of all possible connections. The models predict two striking network properties: the dominant GABAergic input to a MSN arises from neurons with somas at the edge of its dendritic field; and FSIs are interconnected on two different spatial scales: locally by gap junctions and distally by synapses. We show that both properties influence striatal dynamics: the most potent inhibition of a MSN arises from a region of striatum at the edge of its dendritic field; and the combination of local gap junction and distal synaptic networks between FSIs sets a robust input-output regime for the MSN population. Our models thus intimately link striatal micro-anatomy to its dynamics, providing a biologically grounded platform for further study

    Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii

    Get PDF
    Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion
    • …
    corecore