360 research outputs found

    Detecting abrupt changes in the spectra of high-energy astrophysical sources

    Get PDF
    Variable-intensity astronomical sources are the result of complex and often extreme physical processes. Abrupt changes in source intensity are typically accompanied by equally sudden spectral shifts, that is, sudden changes in the wavelength distribution of the emission. This article develops a method for modeling photon counts collected from observation of such sources. We embed change points into a marked Poisson process, where photon wavelengths are regarded as marks and both the Poisson intensity parameter and the distribution of the marks are allowed to change. To the best of our knowledge, this is the first effort to embed change points into a marked Poisson process. Between the change points, the spectrum is modeled nonparametrically using a mixture of a smooth radial basis expansion and a number of local deviations from the smooth term representing spectral emission lines. Because the model is over-parameterized, we employ an ℓ1ℓ1 penalty. The tuning parameter in the penalty and the number of change points are determined via the minimum description length principle. Our method is validated via a series of simulation studies and its practical utility is illustrated in the analysis of the ultra-fast rotating yellow giant star known as FK Com

    Curriculum traditions in Berlin and Hong Kong: a comparative case study of implemented mathematics curriculum

    Get PDF
    published_or_final_versio

    Literacy development: evidence review

    Get PDF
    Literacy includes the word-level skills of word reading and spelling and the text-level skills of reading comprehension and writing composition. These skills are involved in virtually all everyday activities. As a result, poor literacy impacts on every aspect of life. Word reading, spelling, reading comprehension, and writing composition are supported by similar language and cognitive skills as well as affective and environment factors. Learning to be literate builds upon existing knowledge of the language from speech. Becoming literate then enables children to learn more about language. However, literacy is unlikely to be achieved without explicit and prolonged instruction. This review provides an evidence base for decision-making during literacy education. We identify key skills that must be in place to enable children to reach their optimum potential and highlight where weakness can suggest a need for extra support. We begin by discussing models of literacy development as these models provide a framework within which to present the evidence base for the rest of the review. We then consider the underlying skills in greater depth, beginning first with the proximal factors that underpin word-level and text-level reading and writing. Then we consider distal child-based and wider environmental factors that indirectly impact on literacy development

    A pregnant woman with a rapidly growing breast lump

    Get PDF
    published_or_final_versio

    Effects of mesenchymal stromal cells versus serum on tendon healing in a controlled experimental trial in an equine model

    Get PDF
    Abstract Background Mesenchymal stromal cells (MSC) have shown promising results in the treatment of tendinopathy in equine medicine, making this therapeutic approach seem favorable for translation to human medicine. Having demonstrated that MSC engraft within the tendon lesions after local injection in an equine model, we hypothesized that they would improve tendon healing superior to serum injection alone. Methods Quadrilateral tendon lesions were induced in six horses by mechanical tissue disruption combined with collagenase application 3 weeks before treatment. Adipose-derived MSC suspended in serum or serum alone were then injected intralesionally. Clinical examinations, ultrasound and magnetic resonance imaging were performed over 24 weeks. Tendon biopsies for histological assessment were taken from the hindlimbs 3 weeks after treatment. Horses were sacrificed after 24 weeks and forelimb tendons were subjected to macroscopic and histological examination as well as analysis of musculoskeletal marker expression. Results Tendons injected with MSC showed a transient increase in inflammation and lesion size, as indicated by clinical and imaging parameters between week 3 and 6 (p < 0.05). Thereafter, symptoms decreased in both groups and, except that in MSC-treated tendons, mean lesion signal intensity as seen in T2w magnetic resonance imaging and cellularity as seen in the histology (p < 0.05) were lower, no major differences could be found at week 24. Conclusions These data suggest that MSC have influenced the inflammatory reaction in a way not described in tendinopathy studies before. However, at the endpoint of the current study, 24 weeks after treatment, no distinct improvement was observed in MSC-treated tendons compared to the serum-injected controls. Future studies are necessary to elucidate whether and under which conditions MSC are beneficial for tendon healing before translation into human medicine

    Access to mathematics learning for lower secondary students in England during school closures: implications for equity and quality

    Get PDF
    During the initial period of ‘lockdown’ in response to the COVID-19 pandemic, schools in England were closed to the majority of pupils for 15 weeks. We examine how during this time schools provided emergency remote teaching in mathematics to lower secondary pupils with different levels of prior attainment and advantage. Drawing on a mixed-methods study including a survey (N = 49) and interviews (N = 17) with Heads of Mathematics, we analyse schools’ remote learning practices and how school closures have impacted on pupils’ opportunity to learn mathematics (OTL). We find that inequitable distribution of engaged time, mathematical content and quality teaching has disproportionately negatively affected lower-attaining and disadvantaged pupils and is likely to have contributed to a widened attainment gap. We identify opportunities for HOMs to improve remote learning for subsequent school closures and enact equitable policies of distribution that improve OTL for lower-attaining and disadvantaged pupils.Education Endowment Foundatio

    A topological classification of convex bodies

    Get PDF
    The shape of homogeneous, generic, smooth convex bodies as described by the Euclidean distance with nondegenerate critical points, measured from the center of mass represents a rather restricted class M_C of Morse-Smale functions on S^2. Here we show that even M_C exhibits the complexity known for general Morse-Smale functions on S^2 by exhausting all combinatorial possibilities: every 2-colored quadrangulation of the sphere is isomorphic to a suitably represented Morse-Smale complex associated with a function in M_C (and vice versa). We prove our claim by an inductive algorithm, starting from the path graph P_2 and generating convex bodies corresponding to quadrangulations with increasing number of vertices by performing each combinatorially possible vertex splitting by a convexity-preserving local manipulation of the surface. Since convex bodies carrying Morse-Smale complexes isomorphic to P_2 exist, this algorithm not only proves our claim but also generalizes the known classification scheme in [36]. Our expansion algorithm is essentially the dual procedure to the algorithm presented by Edelsbrunner et al. in [21], producing a hierarchy of increasingly coarse Morse-Smale complexes. We point out applications to pebble shapes.Comment: 25 pages, 10 figure

    Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation

    Get PDF
    Expanding far beyond traditional applications in optical interconnects at telecommunications wavelengths, the silicon nanophotonic integrated circuit platform has recently proven its merits for working with mid-infrared (mid-IR) optical signals in the 2-8 {\mu}m range. Mid-IR integrated optical systems are capable of addressing applications including industrial process and environmental monitoring, threat detection, medical diagnostics, and free-space communication. Rapid progress has led to the demonstration of various silicon components designed for the on-chip processing of mid-IR signals, including waveguides, vertical grating couplers, microcavities, and electrooptic modulators. Even so, a notable obstacle to the continued advancement of chip-scale systems is imposed by the narrow-bandgap semiconductors, such as InSb and HgCdTe, traditionally used to convert mid-IR photons to electrical currents. The cryogenic or multi-stage thermo-electric cooling required to suppress dark current noise, exponentially dependent upon the ratio Eg/kT, can limit the development of small, low-power, and low-cost integrated optical systems for the mid-IR. However, if the mid-IR optical signal could be spectrally translated to shorter wavelengths, for example within the near-infrared telecom band, photodetectors using wider bandgap semiconductors such as InGaAs or Ge could be used to eliminate prohibitive cooling requirements. Moreover, telecom band detectors typically perform with higher detectivity and faster response times when compared with their mid-IR counterparts. Here we address these challenges with a silicon-integrated approach to spectral translation, by employing efficient four-wave mixing (FWM) and large optical parametric gain in silicon nanophotonic wires

    A nexus between 3D atomistic data hybrids derived from atom probe microscopy and computational materials science: a new analysis of solute clustering in Al-alloys

    Get PDF
    Solute clusters affect the physical properties of alloys. Knowledge of the atomic structure of solute clusters is a prerequisite for material optimisation. In this study, solute clusters in a rapid-hardening Al-Cu-Mg alloy were characterised by a combination of atom probe tomography and density functional theory, making use of a hybrid data type that combines lattice rectification and data completion to directly input experimental data into atomistic simulations. The clusters input to the atomistic simulations are thus observed experimentally, reducing the number of possible configurations. Our results show that spheroidal, compact clusters are more energetically favourable and more abundant

    Control of hypothalamic-pituitary-adrenal stress axis activity by the intermediate conductance calcium-activated potassium channel, SK4

    Get PDF
    NON-TECHNICAL SUMMARY: Our ability to respond to stress is critically dependent upon the release of the stress hormone adrenocorticotrophic hormone (ACTH) from corticotroph cells of the anterior pituitary gland. ACTH release is controlled by the electrical properties of corticotrophs that are determined by the movement of ions through channel pores in the plasma membrane. We show that a calcium-activated potassium ion channel called SK4 is expressed in corticotrophs and regulates ACTH release. We provide evidence of how SK4 channels control corticotroph function, which is essential for understanding homeostasis and for treating stress-related disorders. ABSTRACT: The anterior pituitary corticotroph is a major control point for the regulation of the hypothalamic–pituitary–adrenal (HPA) axis and the neuroendocrine response to stress. Although corticotrophs are known to be electrically excitable, ion channels controlling the electrical properties of corticotrophs are poorly understood. Here, we exploited a lentiviral transduction system to allow the unequivocal identification of live murine corticotrophs in culture. We demonstrate that corticotrophs display highly heterogeneous spontaneous action-potential firing patterns and their resting membrane potential is modulated by a background sodium conductance. Physiological concentrations of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP) cause a depolarization of corticotrophs, leading to a sustained increase in action potential firing. A major component of the outward potassium conductance was mediated via intermediate conductance calcium-activated (SK4) potassium channels. Inhibition of SK4 channels with TRAM-34 resulted in an increase in corticotroph excitability and exaggerated CRH/AVP-stimulated ACTH secretion in vitro. In accordance with a physiological role for SK4 channels in vivo, restraint stress-induced plasma ACTH and corticosterone concentrations were significantly enhanced in gene-targeted mice lacking SK4 channels (Kcnn4(−/−)). In addition, Kcnn4(−/−) mutant mice displayed enhanced hypothalamic c-fos and nur77 mRNA expression following restraint, suggesting increased neuronal activation. Thus, stress hyperresponsiveness observed in Kcnn4(−/−) mice results from enhanced secretagogue-induced ACTH output from anterior pituitary corticotrophs and may also involve increased hypothalamic drive, thereby suggesting an important role for SK4 channels in HPA axis function
    corecore