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Variable-intensity astronomical sources are the result of complex
and often extreme physical processes. Abrupt changes in source in-
tensity are typically accompanied by equally sudden spectral shifts,
i.e., sudden changes in the wavelength distribution of the emission.
This article develops a method for modeling photon counts collected
from observation of such sources. We embed change points into a
marked Poisson process, where photon wavelengths are regarded as
marks and both the Poisson intensity parameter and the distribution
of the marks are allowed to change. To the best of our knowledge
this is the first effort to embed change points into a marked Poisson
process. Between the change points, the spectrum is modeled non-
parametrically using a mixture of a smooth radial basis expansion
and a number of local deviations from the smooth term representing
spectral emission lines. Because the model is over parameterized we
employ an `1 penalty. The tuning parameter in the penalty and the
number of change points are determined via the minimum description
length principle. Our method is validated via a series of simulation
studies and its practical utility is illustrated in the analysis of the
ultra-fast rotating yellow giant star known as FK Com.

1. Introduction. Astronomical sources that exhibit temporal variabil-
ity or periodicity are among the most scientifically rich in the observed
Universe. Variation in source intensity can result from rotations, eclipses,
magnetic activity cycles, or the turbulent flows of matter into deep gravita-
tional wells. Massive stellar explosions known as super novae, for example,
appear as abrupt peaks in the electromagnetic radiation emitted from a
source. They sometime produce a narrow beam of intense high-energy ra-
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diation that appears as γ-ray bursts from Earth—although there are other
sources of γ-ray bursts. These bursts originate in distant galaxies, can last
from milliseconds to minutes, and are among the most energetic events that
occur in the Universe. There are many less dramatic objects that produce
temporal variability; they include signals with repeated peaks and troughs
that may or may not follow a predictable periodic pattern. A variable star,
for example, exhibits fluctuating emission that can be due to a natural ex-
pansion and contraction in its radius as it evolves (a so-called pulsating
variable star) or to eruptions in its coronae such as flares or mass ejections.
In extreme cases, superflares can erupt producing millions of times more
energy than a typical solar flare; if such a flare occured on the Sun it could
destroy the Earth’s ozone layer and cause mass planetary extinction. Al-
though the mechanism is not well understood, super flares are most likely
to occur on fast rotating stars (McKee, 2012).

In this article we develop statistical methods that enable us to identify
changes in observed emission from astronomical sources, such as those associ-
ated with massive energetic events in the coronae of variable stars. Dramatic
shifts in intensity of these sources are typically accompanied by changes in
the distribution of the wavelength of the photons emitted, known as the
spectrum of the source. Thus, our methods aim to take advantage of changes
both in the intensity of the emission and in its wavelength distribution. We
illustrate our methods by applying them to high-energy observations of the
flaring star known as FK Com.

Data collection in high-energy astrophysics. High-energy astrophysics is the
study of electromagnetic radiation in the ultraviolet, X-ray, and γ-ray bands.
The production of such high-energy photons requires temperatures of mil-
lions of degrees and signals the release of deep wells of stored energy such
as those in very strong magnetic fields, extreme gravity, explosive nuclear
forces, and shock waves in hot plasmas. High-energy detectors have much in
common in terms of their statistical properties (and much that distinguishes
them from detectors in other energy regimes). In this article we focus on sta-
tistical methods that are appropriate for high-energy astrophysics.

Astronomical data from high-energy observatories are usually obtained as
a list of photons; the list records the two-dimensional direction from whence
each photon arrived, the time at which it was recorded, and its wavelength
(and hence its energy). Owing to the intrinsic resolutions of high-energy
photon telescope/detector systems, each of these four attributes is inher-
ently discrete and the data can be compiled into a four-way table of photon
counts. Although each attribute is subject to uncertainty (also inherent in
the telescope/detector systems, e.g., the true direction of arrival is distorted
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by the point spread function), the quality of the resulting datasets is un-
precedented in the history of astronomical observations. Nonetheless the
remarkable four-way tables of photon attributes are largely an untapped re-
source. This is mostly due to a lack of principled statistical methods that can
be used to detect and characterize astronomical sources in high-dimensional
spaces. This is especially true of high-spectral-resolution grating data (e.g.,
data obtained using the HETGS+ACIS-S configuration of the Chandra X-
ray Observatory), where a self-selected sample of interesting objects are ob-
served for long durations (often for > 100 ksec) with Doppler resolutions of
∼100 km s−1, and with an intrinsic temporal resolution that varies from one
millisecond to three seconds. Because the locations of the objects we study
in this article do not change, we ignore directional information and focus on
the two-way table of photon counts indexed by time and wavelength. The
one-way marginal table of wavelengths is called the (observed) spectrum and
that of the times is the (observed) light curve of the source.

Change points in Poisson processes. From a statistical point of view, sud-
den changes in an underlying physical process are modeled via change points.
In a parametric model, for example, the value of the parameter is allowed
to change at one or more time points during the observation. The periods
of time where the parameter is fixed are called the regimes of the process.
We might consider testing for a single change point, fitting the model with a
given number of change points, or estimating the number of change points.
Given that the data in high-energy astrophysics are photon counts, we focus
on change points in non-homogeneous Poisson processes. Because the wave-
length (and direction) of each photon are recorded, we can either model them
using a marked Poisson process or count the events in each of a number of
wavelength bins and model them as a multivariate Poisson process. Typi-
cal detectors have discrete temporal and spectral resolution so it is natural
to use photon counts in time cross wavelength bins, i.e., to use discrete-
time processes. The methods that we propose are designed specifically for
two-way tables of Poisson counts of this sort.

The complexity of any statistical model naturally increases with the num-
ber of change points. Thus to avoid overfitting, methods must penalize com-
plexity. Bayesian prior distributions and marginalization techniques are nat-
ural avenues for encouraging parsimony, for example in that they inherently
embody Occam’s Razor in model selection (e.g., MacKay, 2003, chapter 28).
It is not surprising then that there is an extensive literature on Bayesian
methods for change point models. Raftery and Akman (1986) is an early
contribution for count data generated according to a homogeneous Poisson
process until some unknown time when the intensity of the process changes.
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They propose computing the joint posterior distribution of the two Pois-
son rates and the single change point along with a Bayes Factor to test for
existence of the change point; see Carlin, Gelfand and Smith (1992) and
Moreno, Casella and Garcia-Ferrer (2005) for derivation of hierarchal and
intrinsic prior distributions, respectively, in the single change point Poisson
setting. Green (1995) generalizes this approach by using a continuous time
model, allowing for multiple regimes, putting a prior distribution on the
number of regimes, and fitting this number. Lai and Xing (2011), on the
other hand, use a discrete time model with a Bernoulli process governing
the change in regimes. This approach follows Chib (1998) who embedded a
latent discrete-time discrete-state Markov process for the regime index into
a multi-level Bayesian model. This formulation has been applied for inho-
mogeneous Poisson processes, for example, to model change points in the
parameters of a log-linear model (Park, 2010), see Park, Krafty and Sánchez
(2012) for a related approach.

Perhaps the most popular change-point method for astronomical count
data is known as Bayesian Blocks (Scargle, 1998). It starts by splitting the
time interval into two, assuming a homogeneous Poisson process on each,
and computing the posterior odds of this model relative to a homogeneous
process on the entire interval. The change point is chosen by maximizing
the posterior odds and is accepted if the odds favor this model. This pro-
cess continues recursively on each subinterval until no more change points
are added. Scargle et al. (2013) improved the method by achieving global
optimization over the change points while adding the capacity to handle
gaps in the data, variable exposure, piecewise linear and piecewise exponen-
tial Poisson intensities, multivariate data, the analysis of variance, data on
the circle, etc. Bayesian Blocks does not, however, address changes in the
spectrum at the change points.

Non-Bayesian methods for change-point detection have also been pro-
posed for non-homogeneous Poisson processes. Akman and Raftery (1986)
and Worsley (1986) are early contributions. Both papers developed meth-
ods for testing for the presence of a change-point in a Poisson process.
These methods follow classical frequentist arguments and also provide in-
terval estimates for any detected change-points. Loader (1992) considered
using log-linear models for non-homogeneous Poisson processes. In partic-
ular likelihood ratio tests are derived to choose a “best” model amongst
different change-point and log-linear models for the observed data. In Mei,
Han and Tsui (2011) methods are proposed for detecting changes in Poisson
rate after the effects of population size are taken into account. These meth-
ods are based on a generalized likelihood ratio, weighted likelihood ratio,
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and adaptive thresholding. More recently, Shen and Zhang (2012) applied
the modified BIC (mBIC) of Zhang and Siegmund (2007) to detect change-
points in non-homogeneous Poisson processes. The mBIC can be viewed as
a penalized likelihood model selection criterion that is tailored to estimating
the number and locations of the change points.

Change points in marked Poisson processes. Despite the extensive litera-
ture on change points in Poisson processes, there is little on change points
in marked Poisson processes. Methods have been developed to test for non-
homogeneity in marked Poisson processes, for example via a scan statistic
that is computed in a sliding time interval (Chan and Zhang, 2007). In
high-energy astrophysics a common strategy is to compute a simple sum-
mary statistic describing the wavelength distribution in each time bin and
to visually inspect a plot of the statistic as a function of time. A typical
choice of statistics is the so-called hardness ratio which is the ratio of the
photon count observed above a given wavelength threshold to that below
the threshold; see Park et al. (2006) for a small-sample statistical treatment
of hardness ratios. Plotting hardness ratios against time is an informal ex-
ploratory technique. The primary goal of this article is to provide a change
point method for marked Poisson processes that is inspired by and tailored
to a specific problem in high-energy astrophysics.

Methods for detecting change points. There is a wide range of statistical ap-
proaches for detecting statistical change points. For the classical simple case
of piecewise constant signals with additive noise, for example, Yao (1988)
studied the use of the Schwartz criterion and showed it to be consistent. This
criterion can be interpreted as the classical Bayesian information criterion
(BIC) if the location of a change point is treated as a free parameter (or as
a dimension of the model). In this case, however, the likelihood functions
violate the regularity conditions necessary for the classical BIC, so both cri-
teria can likely be improved. To circumvent this issue, Zhang and Siegmund
(2007) provide an ingenious method to approximate the Bayes factor and
developed the above-mentioned mBIC for change point detection which has
been shown to be consistent in various settings. More recently, Ninomiya
(2014) derived a specialized Akaike information criterion (AIC) for change
point estimation. Results from Aue and Lee (2011, Section 3.3), however,
can be used to show that this AIC method is not consistent.

In this article we focus on the minimum description length (MDL) prin-
ciple (Rissanen, 1989, 2007), which can also be viewed as a penalized like-
lihood approach to model selection. A brief introduction of MDL is given
in Section 3.3. One of its earliest applications to change point estimation
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is the image segmentation work of Leclerc (1989), where the corresponding
MDL criterion can be easily reduced to the classical one-dimensional change
point problem setting; see also Lee (1998) for an extension to correlated
noise. Other successful MDL applications to change point problems include
discontinuity detection in nonparametric regression (Lee, 2002a), structural
break detection in nonstationary time series models (Davis and Yau, 2013;
Yau, Tang and Lee, 2015), and change point detection in quantile modeling
(Aue et al., 2014). Under mild regularity assumptions, these MDL solutions
can be shown to be consistent.

For many change-point problems simpler than the one considered in this
paper, the major penalty terms of mBIC and MDL are remarkably simi-
lar; e.g., compare Equation (8) of Zhang and Siegmund (2007) and Equa-
tion (6.2) of Lee (1997). This provides reassuring evidence that both mBIC
and MDL are reliable methods for change point detection.

Strategy and outline. We pursue a non-parametric penalized-likelihood strat-
egy, using MDL to optimize the tuning parameters of the penalty function
and to fit the number of change points. Between the change points, we as-
sume a homogeneous Poisson process where the spectrum includes a broad
smooth term that is modeled using a radial basis expansion. In particu-
lar the bases we use are cubic polynomials, which provide a good balance
between model flexibility and ease of implementation. We also include a
number of single-bin local deviations from this extended smooth model.
Physically, these deviations correspond to spectral emission lines that are
the result of the production of photons of a particular wavelength as elec-
trons fall to the lower energy shells of a specific ion. Both the radical ba-
sis expansion and the local deviations are over parameterized in that we
expect most of their coefficients and intensities (respectively) to be zero.
Thus, we employ an `1 penalty on both. An R package “Automark” im-
plementing our proposed methodology is available to interested readers at
https://github.com/astrostat/Automark.

Some simple spectral models such as power laws and exponential absorp-
tion can be formulated as log-linear models (van Dyk et al., 2001) and thus
in principle could be embedded into a temporal model with change points for
their parameters, similar to the proposal of Park (2010). We take a different
approach by using flexible non-parametric spectral models. This allows us to
account for both blurring of the recorded energies and background contam-
ination of the photon counts, and to apply a single model irrespective of the
particular shape of the source spectra. (See van Dyk and Kang (2004) for a
review of the source and data-distortion models used in high-energy spectral
analysis.) This strategy is contrary to the typical approach in high-energy
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spectral analysis where physics-based parametric models are preferred be-
cause their parameters have direct scientific meaning. Our primary goal
here, however, is to identify the change points. The spectra corresponding
to each regime within the process can be fit using physics-based models in
a secondary analysis.

This article is organized into seven sections. Section 2 describes the de-
tectors used for data collection, the relevant astrophysical models, and basic
notation for our statistical approach. We formalize our model for the ho-
mogeneous Poisson processes within each regime of the overall process in
Section 3 and describe how we embed this into the change-point model in
Section 4. Numerical results including a set of simulation studies and an
application to the yellow giant FK Com appear in Sections 5 and 6, respec-
tively. Discussion appears in Section 7 and details of the derivation of our
MDL criterion in an Appendix.

2. Astrophysical Background and Statistical Notation. Suppose
that we observe photon counts in an N × J rectangular array of equally-
sized wavelength-cross-time bins, where yij is the photon count in the bin
with wavelength range [wi − δw/2, wi + δw/2) and temporal range [tj −
δt/2, tj + δt/2), for i = 1, . . . , N and j = 1, . . . , J . Although this array
may be compiled using the natural resolution of the detector, with high-
resolution data it may be computationally advantageous to combine the
natural bins in order to obtain a lower resolution array of photon counts.
This strategy is illustrated and discussed in Section 6. In any case, the
expected count in each bin is ideally proportional to the brightness of the
astronomical source integrated over its time and wavelength ranges. Because
of detector effects, however, a photon with wavelength w has a distribution
of possible recorded energies, w′. This distribution is called the detector
response function and denoted R(w,w′). We apply our methods to data
collected using a grating that, like a prism, spatially separates photons as a
function of their wavelength. With grating data, wavelength is measured very
accurately and we can ignore measurement uncertainty and treat R(w,w′) as
a Dirac delta function. Another detector effect arises because the sensitivity
of the detector varies with photon wavelength, an effect that is quantified
via the so-called effective area of the detector and denoted by A(w). The
effective area quantifies characteristics of the telescope mirrors that do not
relate to the nature of the source and is typically treated as known. (See,
however, Lee et al. (2011) and Xu et al. (2014) for development of Bayesian
statistical methods that account for uncertainty in A(w).)

Using a Poisson model for the photon counts and letting λ(tj , wi) be the
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expected count per unit time and per unit wavelength averaged over the bin
centered at (tj , wi),

(1) yij
ind∼ Poisson{δt · δw · λ(tj , wi) ·A(wi)}.

In practice, we may combine data from K detectors, each with its own
effective area. Letting A1(w), . . . , AK(w) denote the K effective areas, the
total counts across the K detectors can be modeled

Yij =

K∑
k=1

yijk,

where
yijk

ind∼ Poisson{δt · δw · λ(tj , wi) ·Ak(wi)}

are the counts recorded with detector k. Because the yijk are independent
across k, we have

Yij ∼ Poisson

{
δt · δw · λ(tj , wi)

K∑
k=1

Ak(wi)

}
.

The goal of this article is to infer the properties of λ(tj , wi) using the
observed photon counts, {Yij}. We are particularly interested in detecting
statistically significant changes in {Yij} over time. In other words, we would
like to determine if there are any change point, π, such that λ(tj , wi)

∣∣
{tj≤π}

differs from λ(tj , wi)
∣∣
{tj>π}

. If there are, we aim to estimate the number of

change points and their values.
For ease of presentation, we develop our estimation procedure in two

stages. First we develop a flexible model for a time-homogeneous source
spectrum. That is we assume that there are no change points and that
λ(tj , wi) is constant in tj . In the second stage we introduce change points
and allow λ(tj , wi) to change over time.

3. A Model for the Homogeneous Poisson Processes.

3.1. A nonparametric spectral model. Because there are no change points
in our time-homogeneous Poisson model, we drop tj from the argument of
λ(tj , wi) and write λ(tj , wi) = λ(wi) in this section. Also, we denote the
expectation of Yij by µ(wi). That is, µ(wi) = s(wi)λ(wi) with s(wi) =

δt · δw
∑K

k=1Ak(wi) being a completely specified function. We represent the
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expected counts due to the underlying physical process by λ and expected
detector counts by µ; µ is adjusted for varying bin sizes and effective areas.

The parameter of scientific interest is λ(wi). For the astronomical sources
that we study λ(wi) is mostly smooth with a few emission lines overlaid and
we adopt the model

(2) λ(wi) = f(wi) +
M∑
m=1

αmgm(wi, τm),

where f(w) is a nonnegative smooth function, M is the number of emission
lines, αm > 0 is the magnitude of emission line m, and gm(w, τm) models the
shape of the emission line centered at τm. Common choices for gm(w, τm)
include Gaussian density functions with small variances, Lorentzian density
functions, and delta functions (e.g., van Dyk et al., 2006, and the references
therein). Here we assume that each of the emission lines locates completely
within a single bin, although our framework can be easily modified for cases
when some emission lines span multiple bins. For astrophysical reasons, we
also assume that each αm > 0, that is each emission line constitutes a
positive deviation from f(w), although in principle the αm may also be
negative, so long as λ(wi) > 0.

If an individual spectral line is located in a single bin, the line profile,
gm(w, τm), is an indicator function for the interval of width δw centered at
τm ∈ {w1, . . . , wN}, that is, an indicator function for one of the wavelength
bins. The natural resolution of the bin counts does not allow modeling of
gm(w, τm) at any greater level of detail than this. Under this model for the
emission lines, λ(wi) in (2) becomes

λ(wi) = f(wi) +
M∑
m=1

αmI

(
τm −

δw
2
≤ wi < τm +

δw
2

)
,

where I(A) denotes the indicator function for A and τm ∈ {w1, . . . , wN}.
Because of the nonnegativity constraint on λ(wi), we introduce a log-link
function,

(3) log λ(wi) = log f(wi) +
M∑
m=1

α′mI

(
τm −

δw
2
≤ wi < τm +

δw
2

)
where α′m is the transformed αm that ensures the equality in (3) holds.

To provide flexible modeling, we use a radial basis expansion (see, e.g.,
Buhmann, 2003; Ruppert, Wand and Carroll, 2003) to nonparametrically
model log f(w), the smooth component of log λ(w). Specifically, we use the
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P basis functions, (ξ1(w), . . . , ξP (w)), which are polynomials of power 3 with
equally spaced knots, κ1, . . . , κP−4.

1 Specifically, the basis functions are

ξ1(w) = 1, ξ2(w) = w, ξ3(w) = w2, ξ4(w) = w3, and

ξp+4(w) = |w − κp|3, p = 1, . . . , P − 4.

Substituting these into (3) yields

log λ(wi) =
P∑
p=1

βpξp(wi) +
M∑
m=1

α′mI

(
τm −

δw
2
≤ wi < τm +

δw
2

)
,(4)

where βp is the coefficient of basis function p.
Model (4) is an example of a generalized semi-parametric model. Under

this formulation, estimating λ(wi) is equivalent to estimating P , (β1, . . . , βP ),
M , and (α′1, τ1, . . . , α

′
M , τM ).

3.2. A lasso model for the emission lines. A difficulty in fitting model (4)
is the estimation of (τ1, . . . , τM ), the locations of the emission lines. With
M unknown, there is a total of 2N possibilities for (τ1, . . . , τM ). However, as
emission lines are relatively rare (i.e., sparse), we can take advantage of the
celebrated `1 penalty techniques (e.g., Tibshirani, 1996) to provide a fast
searching algorithm for (τ1, . . . , τM ).

We begin by rewriting (4) as

(5) log λ(wi) =
P∑
p=1

βpξp(wi) +
N∑
k=1

ηkIk(wi) =
P∑
p=1

βpξp(wi) + ηi,

with Ik(w) = I(wk − δw/2 ≤ w < wk + δw/2). In this formulation ηi = 0
implies there is no emission line in the wavelength bin centered at wi. There
is a one-to-one correspondence between models (4) and (5) via

M =
N∑
i=1

I(ηi 6= 0) and
{

(τm, α
′
m)
}M
m=1

=
{

(wi, ηi) : ηi 6= 0
}
.

A major advantage of re-expressing model (4) as (5) is that, many of the
η = (η1, . . . , ηN )ᵀ are zero in (5). Therefore by imposing an `1 penalty,
we can achieve fast simultaneous selection and estimation of the nonzero
elements among η.

1The gap between the first knot the left endpoint of the spectral range and the gap
between the last knot and the right endpoint of the range are both slightly larger than
the gaps between consecutive knots.
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We employ a common strategy for the smooth component, log f(wi) =∑P
p=1 βpξp(wi), in (5). Namely, we specify a large value of P a priori and

estimate β = (β1, . . . , βP )ᵀ under a penalty term that aims to avoid over-
fitting. In this way, the coefficients of the the redundant functions among
ξ1(w), . . . , ξP (w) are shrunk toward zero. This enables us to assume that P
is known (and large).

Penalized maximum likelihood can be used to simultaneously estimate all
of the unknown parameters in (5), including those describing the smooth
component and those describing the emission lines.

For a Poisson random variable with expectation a > 0, we write the
corresponding probability mass function as

(6) q(x; a) = −a+ x log a− log(x!)

for any nonnegative integer x. The log-likelihood of a bin count Yij is

lone(Yij ;θ) = q{Yij ;µ(wi)} = q{Yij ; s(wi)λ(wi)},

where λ(wi) is parameterized in terms of θ = (β,η) as in (5). (This likeli-
hood will be used within one homogenous time segement in Section 4; hence
the subscript “one”.) Adding a penalty, we define the estimate of θ as the
maximizer of

(7)
N∑
i=1

J∑
j=1

lone(Yij ;θ)− γ{ρ‖Dβ‖1 + (1− ρ)‖η‖1},

where D = diag{(0, 0, 0, 0, 1, . . . , 1)} is a diagonal matrix, and γ > 0 and
0 ≤ ρ ≤ 1 are tuning parameters that determine the penalty on θ. The first
four diagonal elements of D are set to zero because there is no penalty for
the inclusion of (β1, . . . , β4) in the model. If γ and ρ are specified, maximiza-
tion of (7) is equivalent to lasso fitting of a generalized linear model. There
are fast algorithms for this optimization problem (e.g., coordinate descent,
Friedman, Hastie and Tibshirani, 2010) and software is widely available;
e.g., the R package glmnet.

3.3. Tuning parameter selection using MDL. The success of (7) depends
heavily on our ability to choose good values of γ and ρ, which determine
the number of emission lines and the number of basis functions used in
the smooth component of the fitted model. To select γ and ρ, we use the
minimum description length (MDL) principle (Rissanen, 1989, 2007). In
short, MDL defines the best model as the one that achieves the highest
compression rate of the data, D. In other words, the best model allows us to



12 WONG, KASHYAP, LEE, & VAN DYK

store D with the shortest codelength. A good statistical model and a good
compression method share a common feature: they should be able to capture
regularities and patterns hidden in the data. Therefore it is reasonable to
expect that a model chosen by MDL to be a good statistical model; some
successful examples for change point problems were provided in Section 1,
while for other applications can be found in the later chapters of Grünwald,
Myung and Pitt (2005). There are various versions of MDL. We use the
so-called two-part form of MDL to derive a model selection criterion for
choosing γ and ρ.

Let CL(Z) be the codelength of Z: one can treat CL(Z) as the amount
of memory needed to store Z. Similarly, let CL(Z|X ) be the codelength of
Z conditional on X , that is, the codelength of Z with knowledge of X .
Generally speaking, the two-part form of MDL decomposes the codelength
of the data D into two parts

(8) CL(D) = CL(M̂) + CL(D|M̂),

where the best fitting model M̂ is defined to be the minimizer of CL(D). In
Appendix A it is shown that when fitting model (7), for large N the two-part
MDL (8) is asymptotically equal to

(9) mdlnull(γ, ρ) = −
N∑
i=1

J∑
j=1

lone(Yij ; θ̂) +
1

2
‖θ̂‖0 log(NJ) + log

(
N

‖η̂‖0

)
,

where θ̂ = (β̂, η̂) is the maximizer of (7) given γ and ρ, and the `0 norm,
‖z‖0, denotes the number of nonzero elements in the vector z. We choose
the values of γ and ρ that jointly maximize (9) by evaluating mdlnull(γ, ρ)
on a fine grid, using glmnet to compute θ̂(γ, ρ) on a grid of values of γ
for each value of ρ. In many MDL applications, a term similar to the last
one in (9) is negligible and hence omitted. Here, however, the number of
unknown parameters (N+P ) is not ignorable when compared to the number
of observations and hence the last term in (9) is required.

In summary, for the time-homogeneous model with no change points, the
parameter estimate θ̂ = (β̂, η̂) is obtained by maximizing (7) with γ and
ρ chosen as the joint minimizer of (9). Finally, the estimate for λ(wi) is
calculated as λ̂(wi) = exp{

∑P
p=1 β̂pξp(wi) + η̂i}.

4. Modeling with Change Points.

4.1. Adding change points to the spectral model. In this section, we allow
the spectrum, λ(tj , wi), to change over time. Hence we reinstate the nota-
tion that emphasized the dependence on tj . We model λ(tj , wi) as piecewise
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constant as a function of tj . This involves partitioning the entire time in-
terval [0, T ) into several subintervals and independently modeling λ(tj , wi)
as constant in tj in each subinterval using a model of the form given in (5).
Again let Yij be the photon count in the bin centered at (wi, tj) and summed
over the K detectors. We can formalize the change-point model for λ(tj , wi)
as

(10) λ(tj , wi) =

B∑
b=1

Ib(tj)λb(wi),

where B ≥ 1 is the number of time (sub)intervals, Ib(tj) = I(πb−1 ≤ tj < πb)
identifies the time bins in interval b, t1 − δt/2 = π0 < · · · < πB = tJ + δt/2
are the change points, and λb(wi) is the spectrum in time interval b. For
ease of discussion, we refer to π1, . . . , πB−1 as the change points, excluding
the endpoints π0 and πB. The within time-interval spectra are modeled as
in (5), i.e.,

log λb(wi) =

P∑
p=1

βbpξp(wi) + ηbi,

where βb = (βb1, . . . , βbP )ᵀ and ηb = (ηb1, . . . , ηbN )ᵀ are the parameters for
the time-interval-specific spectra.

There is no gain in allowing the change points, (π1, . . . , πB−1), to take
values other than bin breaks if there is no prior knowledge about the change
points. Further, to maintain sufficient data within each time interval for
acceptable estimation, |πi − πj | cannot be too small for any 0 ≤ i, j ≤ B.
We require that |πi − πj | ≥ 5δt in our numerical illustrations. This ensures
that each time interval is at least five bins wide.

4.2. Model selection using MDL. In order to fit model (10), we must esti-
mate the number of time intervals,B, the change points π = (π1, . . . , πB−1)

ᵀ,
and the parameters for each interval, Θ = {θ1, . . . ,θB}, where θb = (βb,ηb).
Once B and π are specified, however, each λb(wi) along with its tuning
parameters, γ = γb and ρ = ρb, can be estimated individually using the
method of Section 3. Thus, we aim to first estimate B, π and then compute
γ̂b(B,π), ρ̂b(B,π), and θ̂b(γ̂b, ρ̂b) as in Section 3 for b = 1, . . . , B. This no-
tation signifies the dependence of γ̂b and ρ̂b on (B,π), and the dependence
of θ̂b on (γ̂b, ρ̂b). Similarly, we also write Θ and λ(tj , wi) as Θ(γ,ρ) and
λ {tj , wi;B,π,Θ(γ,ρ)}, respectively.

The profile penalized (pp) loglikelihood function forB, π under model (10)
depends on the tuning parameters γ = (γ1, . . . , γB) and ρ = (ρ1, . . . , ρB)
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and can be written

(11) logLpp(B,π;γ,ρ) =

N∑
i=1

J∑
j=1

q
(
Yij ; s(wi)λ

{
tj , wi;B,π, Θ̂(γ,ρ)

})
,

with q the Poisson loglikelihood given in (6). Because γ and ρ can be com-
puted as functions of B and π, we can substitute γ̂(B,π) and ρ̂(B,π) into
logLpp(B,π;γ,ρ). This is akin to profiling over γ and ρ, except that γ̂(B,π)
and ρ̂(B,π) are computed according to the MDL criterion rather than by
maximizing logLpp(B,π;γ,ρ). The result is the pseudo profile penalized
(ppp) loglikelihood given by

logLppp(B,π) = logLpp(B,π; γ̂(B,π), ρ̂(B,π))

=
N∑
i=1

J∑
j=1

B∑
b=1

Ib(tj)lone

{
Yij ; θ̂b(B,π)

}
,(12)

where θ̂b(B,π) = θ̂b
(
γ̂(B,π), ρ̂(B,π)

)
. Because different values of B lead

to different numbers of parameters in the model, we cannot estimate the
parameters by maximizing (12). Instead we view this as a model selection
problem and again use the MDL principle. In this way we can choose the
“best” combination of B and π, and then compute γ̂b(B,π), ρ̂b(B,π), and
θ̂b(γ̂b, ρ̂b) for each time interval. We derive the MDL criterion in Appendix B
and show that the best model can be found by minimizing

mdlfull(B,π) = − logLppp(B,π) + logB +

B∑
b=1

log cb(π)

+
B∑
b=1

[
1

2
‖θ̂b(B,π)‖0 log{Ncb(π)}+ log

(
N

‖η̂b(B,π)‖0

)]
,(13)

where cb(π) is the cardinality of {i : πb−1 ≤ ti < πb} for b = 1, . . . , B, i.e.,
cb(π) is the number of time bins in time interval b.

4.3. Practical minimization. We now consider minimization of the MDL
criterion given in (13). Once the number of time intervals, B, and the lo-
cations of change points, π, are specified, unique estimates of γ and ρ can
be obtained using the method described in Section 3. Since the time in-
tervals are independent the required computation is highly parallelizable.
Nonetheless, minimization of (13) is not trivial. It involves an expensive
combinatoric optimization: for each B, there are

(
J−1
B−1

)
possibilities for π.
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Algorithm 1 A stepwise search algorithm for minimizing (13)

Input: Wavelength-cross-time bin counts {(Yij)}i=1,...,N,j=1,...,J

Description: A fast algorithm for approximately minimizing mdlfull(B,π,γ,ρ)

1: B ← 1 and π ← () (null vector)
2: z ← mdlfull(1,π).
3: z′ ← z + 1
4: while z < z′ do
5: B ← B + 1
6: z′ ← z
7: π′ ← π
8: Use a grid search to find the change point that when added to the current collection,

π′, gives the largest reduction in mdlfull. Denote this new set of change points as π.
If there is no possible change point to add, break the while-loop.

9: z ← mdlfull(B,π)

10: end while
11: Return {B − 1,π′}

(A small number of these possibilities is not considered by our optimiziation
procedure because we impose a minimum width on each time interval.) To
simplify computation, we propose a fast stepwise forward algorithm to ap-
proximately minimize (13), rather than attempting to globally minimize it.
Briefly, at each step we add a single change point to the current collection
by selecting the new change point that decreases mdlfull(B,π) the most.

More precisely, the algorithm first calculates (13) for the model with no
change points (i.e., only one time interval), that is, it computes mdl1 =
mdlfull(1,π). (This does not depend on π because there are no change
points.) In the second step, the algorithm considers all of the possible models
with a single change point and selects the one that minimizes mdlfull(2,π).
Calling the obtained minimum mdl2, the change point is added to the model
if mdl2 < mdl1; otherwise the algorithm terminates. The algorithm continues
in this way, attempting to add an additional change point to the model at
each step by minimizing (13). It stops when there is no possible change point
remaining that decreases mdlfull(B,π) and this current model is taken as the
(approximate) minimizer of (13). Although this greedy algorithm may result
in local minimization, it is fast and provides a good compromise between
computational efficiency and accuracy (Lee, 2002b). The exact steps of the
algorithm appear in Algorithm 1.

4.4. A Monte Carlo Procedure for Testing for the Existence of Change
Points. In practice it is useful to quantify evidence for existence of the
change points. For a test statistic, we use the change in the MDL function
(13) due to introduction of change points,m? = mdlfull(B̂, π̂)−mdlfull(1,πnull),
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Algorithm 2 Monte Carlo significance test
Input: Working data {(wi, tj , Yij)}i=1,...,N,j=1,...,J , number of simulation Nsim,
significance level α
Description: Monte Carlo test for change point

1: Fit the time homogenous Poisson moded (with no change point, Section 3) and full
Poisson model (including change points, Section 4.3) to {(wi, tj , Yij)}i=1,...,N,j=1,...,J

and denote the test statistic m? = mdlfull(B̂, π̂) − mdlfull(1,πnull). (πnull = (), null
vector)

2: for k = 1 to Nsim do
3: Generate the data set Dk = {(wi, tj , Yipj )} where {p1, . . . , pJ} is a uniformly ran-

dom permutation of {1, 2, . . . , J}.
4: Fit the full Poisson model (including change points) using the procedure in Sec-

tion 4.3 to Dk.
5: Denote the resulting test statistic by m?

k.

6: Estimate the p-value as

p̂ =
#{m?

k ≥ m?}+ 1

Nsim + 1

7: Conclude that there is at least one change point if p̂ < α for some significance level,
α.

where B̂ and π̂ are computed by minimizing (13), and πnull is the null vector
containing no change point. Here mdlfull(1,πnull) is the value of the MDL
function (13) with no change points. We approximate the null distribution
of m? via Monte Carlo using permutation. Specifically, we generate Nsim

uniformly random permutations of {1, 2, . . . , J} independently and the cor-
responding replicate null datasets, (D1, . . . ,DNsim), by shuffling the time
indices of the original dataset according to these permutations (see Step 3
of Algorithm 2). Each replicate dataset is then fit with the full model (in-
cluding change points) according to the MDL criterion specified in (13) and
the resulting test statistic, m?

i is computed (for i = 1, . . . , Nsim). Note that
the MDL criterion (13) with no change points, mdlfull(1,πnull), is invariant
to the permutation and thus need not to be re-computed for the permuted
datasets (D1, . . . ,DNsim). The empirical distribution of (m?

1, . . . ,m
?
Nsim

) is
a Monte Carlo approximation to the null distribution of m? and a p-value
can be computed by comparing m? to (m?

1, . . . ,m
?
Nsim

). Details appear in
Algorithm 2.

5. Numerical Experiments. We conducted a series of simulation ex-
periments to evaluate the empirical properties of the proposed methodology.
Binned photon counts were simulated under eight different spectral-temporal
test functions, λ(tj , wi). In order to make the experiments as realistic as
possible, seven of the test functions were constructed by fitting a spectral-
temporal model, using the method described in Section 4, to the seven ob-
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Table 1
Details of simulation settings. The columns report (1) the chronologically ordered (except
the last row) ObsID numbers of the datasets used to generate each test function, (2) the

number of wavelength bins, (3) the number of time bins, (4) the number of basis
functions P , as in Equation (4), used to fit the corresponding FK Com observation, (5)
the number of time intervals, i.e., the number of change points plus one, estimated from
the corresponding FK Com observation, (6) vector of the numbers of emission lines with
element j corresponding to time interval j, estimated from the corresponding FK Com

observation.

ObsID N J P B M

12297 142 21 34 2 (0, 1)
12356 142 32 34 1 (1)
13251 142 49 34 3 (0, 0, 0)
12298 142 20 34 2 (2, 1)
13259 142 23 34 2 (0, 0)
12357 142 18 34 1 (1)
12299 142 20 34 3 (0, 0, 0)

13251, 12298 142 69 34 5 (0, 0, 0, 2, 1)

servations of FK Com described in Section 6. Because these test functions
have at most two change points and because we would like to investigate the
statistical properties of our method with more change points, an eighth test
function was created by concatenating two of the original test functions. (I
particular, those created from observation identification (ObsID) numbers
13251 and 12298, see Table 1.) The analyses carried out here, including the
binning of the data, is identical to that described in Section 6. Further de-
tails are summarized in Table 1. Together these eight test functions cover a
wide range of possible scenarios, ranging from models with no change point
to models with four change points. For each of the eight λ(tj , wi), 200 data
sets were simulated according to (1), using the real data values for δt, δw,
and A(wi) =

∑K
k=1Ak(wi). The proposed methodology was applied to all

8× 200 = 1400 simulated data sets to estimate λ(tj , wi) for each.
The simulation results are summarized in Table 2. The first column lists

the ObsID number for the observations of FK Com (in chronological rather
than ascending order) used to generate the λ(tj , wi), see Section 6. The
second column shows the (true) numbers of homogeneous time intervals, B,
in each of the λ(tj , wi); recall the number of change points is B − 1. The
third column reports the percentage of the simulated datasets for which the
fitted B̂ exactly equals the true value. The proposed methodology achieved
a correct recovery rate of at least 94% in 6 out of the 8 simulations settings.

Our method also accurately estimates the change points, π, as shown in
Column 4 of Table 2. For those simulations where B is correctly estimated,
Column 4 gives the root mean squared error (RMSE) of π̂, in terms of the
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Table 2
Simulation results. The columns report (1) the chronologically ordered (except the last
row) ObsID numbers of the datasets used to generate each test function, (2) the true

number of time intervals, i.e., the true number of change points plus one, (3) the
percentage of the fitted B̂ that exactly equal the true B, and (4) the root mean square

error of π̂ among those simulations with B̂ = B.

ObsID B % correct B̂ RMSE(π̂)

12297 2 94 0.70
12356 1 100 0
13251 3 98 0.66
12298 2 98 0.29
13259 2 80 0.69
12357 1 100 0
12299 3 100 0

13251, 12298 5 85 0.66

time bin width (δt = 2000 seconds in all cases). The RMSE is less than one
bin width in all eight cases. Figure 1 displays histograms of the estimated
change point location among those simulations for which B̂ = B under the
five test functions with less than a 100% recovery rate for π. In all five
cases, the estimated change point locations are narrowly centered around
the true change points. Finally, for those simulations for which B̂ = B and
π̂ = π, the uncertainty of f̂ is summarized in Figure 2. Here we only present
results for one test function (ObsID 12299); plots for the other test functions
appear in Appendix C. For each of the B = 3 homogeneous time intervals
associated with ObsID 12299, we overlay the fitted f̂ of the simulations for
which B̂ = B and π̂ = π. The results are plotted in panels (a)-(c) of Figure
2. The relatively high uncertainty at high wavelengths is partly due to the
small effective area at these wavelengths; see panel (d) of Figure 2.

6. Application to X-ray Observations of FK Com. FK Com is an
evolved yellow giant star (spectral type G4 III) with a mass of about 8.4
times that of the sun and at a distance of 550 ± 60 light-years. Typically,
late-spectral-type giants are slow rotators, and thus do not maintain a strong
magnetic dynamo that can sustain a high-temperature corona. However,
FK Com is an extremely fast rotator, with equatorial velocities of 179 km/s,
and a rotational period of 2.4 days (Korhonen et al., 1999; Strassmeier,
2009). (For comparison, the Sun rotates at about 2 km/s at its equator.)
Giant stars are formed when a sun-like star depletes the hydrogen at its core
and thus transitions from producing energy though the fusion of hydrogen
into helium to the fusion of heavier elements. Typical sun-like progenitor
stars would require rotational speeds that would tear them apart in order
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Fig 1. Histograms of detected change point locations in the simulation study. The title
of each panel refers to the ObsIDs given in Tables 1 and 2. The widths of the histogram
bins is the same as the time binning of the data; bins containing the true change-points
locations are represented in black. The horizontal axis is elapsed spacecraft time and the
panel corresponding to the concatenation of ObsID 13251 and ObsID 12298 has a broken
x-axis because there is a gap in spacecraft time between the two observations.

to form a giant star with such a rapid rate of spin. Thus, the favored hy-
pothesis for the formation of FK Com-like stars is that they are the result
of a binary star system that has coalesced through a process of mass trans-
fer, dramatically speeding up the stellar rotation in the process (Bopp and
Stencel, 1981). If this is the case, the high rotation should induce a strong
dynamo and consequently a dynamic corona, filled with high-temperature
plasma and organized into loop-like structures via magnetic fields.

FK Com exhibits long duration spots—akin to sunspots—and flares asso-
ciated with these spots. Optical Doppler imaging observations of FK Com
demonstrate the existence of persistent spot-like features (Elstner and Ko-
rhonen, 2005) that remain localized to specific longitudes for long timescales
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Fig 2. Panels (a) - (c): Overlay plots of the f̂ fitted to the 200 simulations generated with
the test function corresponding to ObsID 12299. Notice that all 200 simulations resulted
in B̂ = B and π̂ = π. The three panels represent the B = 3 homogeneous time intervals
of ObsID 12299. The areas between the f̂ computed with each simulated dataset and the
underlying test function are colored and overlaid. Darker color represents more overlap
of these areas and thus summarizes the concentration of the the fitted spectra around the
underlying test function. The solid black line represents the smooth component, f , of test
function 12299 and the dashed lines represent the 5% and 95% (pointwise) percentiles of
f̂ . Similar plots for the other test functions appear in Appendix C. Panel (d): Plot of the
effective area

∑K
k=1Ak(w) curve for test function 12299.
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(>months). Analysis of an X-ray flare observed with the XMM-Newton ob-
servatory showed that the flare is tied to these spots (Drake et al., 2008).
Numerical MHD modeling of the stellar wind and the magnetic structure
(Cohen et al., 2010) shows a highly complex coronal environment, with the
most notable feature being even putatively stable coronal loops “wrapping
around” due to the rotation. Thus, even though the corona appears to be
solar-like in its origin, it is an extreme case of such coronae, and is therefore
of considerable interest to both theoretical and observational studies.

A long-duration, high-resolution X-ray observation of FK Com was car-
ried out with the Chandra X-ray Observatory over seven discontinuous time
periods in April 2011. The data show that the source brightness is constantly
fluctuating with occasional periods of singular flaring activity, see Figures 3
and 4. As a test case for our method, we apply it to these seven Chan-
dra observations of FK Com. Each was preprocessed by discarding photons
with wavelength less than 1.65 or greater than 31 Ångströms. The natu-
ral resolution of Chandra data of this sort is extremely high, resulting in
a very large, but very sparse table of photon counts; typically there is at
most one photon recorded in each wavelength-cross-time bin. We can obtain
substantial computational savings with only a modest sacrifice of scientific
information by reducing the resolution of the data. Massive events in the
corona of FK Com, for example, require appreciable time and are associated
with dramatic spectral shifts. Change points typically appear with frequen-
cies on the order of tens of thousands of seconds, whereas the inherent bin
width is about 3 seconds. In our analyses, we reduce this resolution and use
temporal bins of width δt = 2000 seconds. Similarly, the inherent wavelength
bin width is 0.005 Ångströms and we set δw = 0.2 Ångströms. Though a
substantial reduction in spectral resolution, our analysis is much higher res-
olution than the standard hardness ratio analysis, which can be viewed as
using two or three wavelength bins of width 10-15 Ångströms. Our fitted
λ(tj , wi) are plotted in Figure 5.

Table 3
Monte Carlo p-values for the test for change points in each of the seven observations of

FK Com

ObsID 12297 12356 13251 12298 13259 12357 12299
p-value 0.12 1.00 <0.01 0.01 0.14 1.00 <0.01

We also applied the Monte Carlo test for change points as described in
Section 4.4; the resulting p-values for the seven datasets appear in Table 3.
There is no evidence for change points in two of the observations (Ob-
sID 12356 and 12357), very weak evidence for two (ObsID 12297 and 13259),
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Fig 3. The phase-time light curve of FK Com. The source brightness (i.e., light curve)
over the course of the Chandra observation is shown during periods when the source was
observed. The horizontal axis represents spacecraft elapsed time, and the vertical axis rep-
resents the rotational phase of the star. The tilted red lines show the phase-time corre-
spondence for each observation, showing the time and rotational phase coverage of the full
dataset. Overlaid on the phase-time line, displayed as a deviation from it, are sparklines
depicting the smoothed light curves (green curves). The segments are labeled by the ObsID
numbers. This representation of the light curve shows that there is no obvious rotational
signature in the light curve, and the variability is stochastic. Notice the large flare that
occurs in ObsID 12299: our analysis shows that the spectrum varies significantly during
this flare, see Figure 5.

and strong evidence for the other three. This agrees with the fitted models
illustrated in Figure 5, but quantifies the degree of evidence for the fitted
change points. Finally, the two test functions that resulted in relatively low
recovery rates of B in the simulations described in Section 5 correspond to
the two data sets with the weakest evidence for the a change point, compare
ObsID 12297 and 13259 in Table 2 (% correct B̂) with Table 3 (p-value).

Although we find two or fewer change points in each observation, the
number was not limited in our analyses. Operational constraints limit the
continuous observation time available with the space-based Chandra X-ray
Observatory. The change points that we observe stem from massive energetic
shifts in the cornea of FK Com and take time to evolve. Keeping in mind that
a single massive shift of this sort on the Sun would likely destroy human
civilization, observing a total of seven in one (discontinuous) observation
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Fig 4. Observed data. Each point represents a photon detected with HETGS+ACIS-S con-
figuration of Chandra (including both low- and high-energy gratings data). The wavelengths
are given in Ångströms, and the time is in spacecraft clock seconds. The ObsIDs of each
segment are marked to the right of the red vertical line representing the starting time of
the observation segment. The collected data are sparse, but some changes in the density of
points can be discerned even by eye, indicating temporal and spectral variations.

period spanning less than a fortnight (see Figure 3) is not a small number.
This analysis indicates that large changes in intensities are accompanied

by significant changes in the spectrum of the source. This is readily appar-
ent in the results for ObsID 12299, which shows the observation separated
into three segments with different intensities and spectral shapes; see Ob-
sID 12299 in Figure 3 and row 7 of Figure 5. The spectrum changes to being
dominated by high-energy photons due to an increase in high-temperature
plasma when the flare is set off. As the flare decays, even when the observed
intensity is relatively high, the spectrum can be seen returning to the pre-
flare state, though with enhanced emission over the line-dominated region
around 15 Ångströms.

From a theoretical point of view, this is not an obvious result, since for
active stars like FK Com, it is believed that even the apparently quiescent
corona emits X-rays as a superposition of a large number of weak flares (see,
e.g., Kashyap et al., 2002; Güdel, 2004). However, our analysis favors the
idea that hot plasma could become trapped in stretched field lines wrapping
around the star, and thus cool radiatively, and flares are only triggered spo-
radically when the magnetic strain becomes too large to be sustained. While
a detailed modeling and interpretation of this picture is beyond the scope
of this paper, we point out that even a simple application of a statistically
principled method is enough to obtain an important result: The quiescent
corona of FK Com is unlike the flaring corona, and in this sense is much
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Fig 5. Fitted λ(tj , wi) for seven Chandra observations of FK Com. The ObsID of each
dataset appears in the title of each panel. The left plot in each row shows the fitted spectra
for each identified time interval; the solid black, dashed red, and dotted green curves cor-
respond to the first, second, and third time intervals, respectively. The right plot in each
row is a heat maps that represents the best fit values of λ(tj , wi). Time is given in elapsed
spacecraft time.
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more solar-like than previously anticipated.

7. Discussion. This article develops a novel approach for modeling
change points in a class of marked Poisson processes, specifically the time-
varying spectra of high-energy astrophysical sources. The approach includes
a family of change point models, a practical algorithm for estimation, and
an MDL criterion for selecting the best fitting model. Despite numerous
reported applications where the MDL principle leads to reliable model se-
lection criteria, its use in the statistical literature remains rather sparse. It
is our hope that the present work, in which the MDL principle is applied to
solve a complicated model selection problem that involves the “large p small
n” scenario, will encourage and stimulate renewed research interests in this
useful principle among statisticians.

Although the methods developed in this article are motivated by the
search for change points in high-energy time-varying spectra, it is possible
to extend them to include spatial variations as well. Typically, astrophysi-
cal images include sources at many different scales, ranging from unresolved
point sources to complex structures that may span the field of view. Ow-
ing to instrumental point-spread functions, point sources in close proximity
may overlap and in many cases are overlaid on larger scale structures. An
extension that can account for change points in the spatial plane or in the
spatial cross spectral hyperplane would be quite useful in astronomical data
analysis. Statistically, this involves extending the dimension of the marks in
the Poisson process from the one dimensional photon wavelengths to two
dimension spatial locations or three dimensional spatial cross spectral mea-
surements. This would, of course, involve extensions of the non-parametric
models developed here for spectra to higher dimensional models for images
or joint models for images and spectra.

Acknowledgments. The authors are grateful to the Referees, the Asso-
ciate Editor and the Editor, Professor Nicoleta Serban, for their many useful
and constructive comments. They substantially improved the paper. This
work was conducted under the auspices of the CHASC International As-
trostatistics Center. CHASC is supported by NSF grants DMS-12-08791,
DMS-12-09232 and DMS-1513484. In addition, Vinay Kashyap acknowl-
edges support from Chandra grant GO1-12021X, and from NASA’s contract
to the Chandra X-ray Center, NAS8-03060, Thomas Lee from National Sci-
ence Foundation grants DMS 12-09226 and DMS 15-12945, David van Dyk
from a Wolfson Research Merit Award provided by the British Royal Society
and from a Marie-Curie Career Integration Grant provided by the European
Commission. We also thank Xiao-Li Meng, Tom Ayres, Ofer Cohen, Jeremy



26 WONG, KASHYAP, LEE, & VAN DYK

Drake, David Garcia-Alvarez, Dave Huenemoerder, Heidi Korhonen, Steve
Saar, Paola Testa, and Aad van Ballegooijen for many useful discussions.

APPENDIX A: DERIVATION OF THE MDL CRITERION (9)

This appendix derives (9), and it begins with the calculation of the term
CL(M̂) in (8). In Section 3, every candidate model M can be uniquely
identified by a θ and thus CL(M̂) = CL(θ̂). Now to completely describe
an θ̂ = (β̂ᵀ, η̂ᵀ)ᵀ, one could first specify which elements are nonzero, and
then specify the actual values of these nonzero elements. As there are

( P
‖β̂‖0

)
ways of arranging ‖β̂‖0 nonzero β̂j ’s in P “slots”, we need log2

( P
‖β̂‖0

)
bits to

specify which β̂j ’s are nonzero. Similarly we need log2
(
N
‖η̂‖0

)
bits to specify

which η̂j ’s are nonzero.

Now for the actual values of the nonzero elements in θ̂. As they are penal-
ized maximum likelihood estimates, the approximate effective codelength for
each of them is 1

2 log2(NJ) (e.g., Rissanen, 1989), giving the total codelength

for all nonzero elements as 1
2‖θ̂‖0 log2(NJ). Therefore

CL(M̂) = CL(θ̂) =
1

2
‖θ̂‖0 log2(NJ) + log2

(
P

‖β̂‖0

)
+ log2

(
N

‖η̂‖0

)
.

Since in practice N � P so the second term is ignored, giving our final
expression for CL(M̂):

CL(M̂) =
1

2
‖θ̂‖0 log2(NJ) + log2

(
N

‖η̂‖0

)
.

We remark that in many classical applications of two-part MDL where the
number of possible parameters is small when compared to the number of data
points, a penalty term similar to the last term in the above expression is
typically ignored. However, for the present problem the number of potential
parameters P + N is not ignorable when compared to the number of data
points NJ (where J could be small due to change points, see Section 4).
Failing to consider this last term will lead to an overfitted model. This last
term shares the same role as the additional penalty term in the Extended
Bayesian Information Criterion (EBIC) proposed by Chen and Chen (2008).
These authors have shown that the traditional BIC fails in the so-called
“large p small n” scenario and an additional penalty term is required to
guarantee consistency properties.

Lastly we need to calculate the term CL(D|M̂), which has been shown by
Rissanen (1989) that it is given by the negative of the log likelihood. In our
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case this gives CL(D|M̂) = −
∑N

i=1

∑J
j=1 lone(Yij ; θ̂) with base 2 logarithm.

Combining the expressions for CL(M̂) and CL(D|M̂) and changing the base
of the logarithm from 2 to e, we obtain (9).

APPENDIX B: DERIVATION OF THE MDL CRITERION (13)

This appendix derives the MDL criterion (13). As before, we need to cal-
culate CL(D) = CL(M̂) +CL(D|M̂). For model (10), the codelength CL(M̂)
for any candidate model M̂ can be decomposed into

CL(M̂) = CL(B) + CL(π|B) + CL(Θ̂|B,π)

Since B is an integer, its codelength is CL(B) = log2B. Now for the code-
length of π. Recall that cb is the length of the time segment b. Therefore
knowing the values of (c1, . . . , cB) is equivalent to knowing the values of all
change points, (π1, . . . , πB−1) . Thus it suffices to encode (c1, . . . , cB), and
because they are integers, we have

CL(π|B) =
B∑
b=1

log2 pb.

For the last term, we use the same arguments in Appendix A and obtain

CL(Θ̂|B,π) =
B∑
b=1

CL(θ̂b|B,π) =
B∑
b=1

[
1

2
‖θ̂b‖0 log2{Nc(π)}+ log2

(
N

‖η̂b‖0

)]
.

Finally, CL(D|M̂) is given by the negative of the log likelihood (base 2) of
the candidate model being considered, which gives

CL(D|M̂) =

N∑
i=1

J∑
j=1

B∑
b=1

Ib(tj)lone{Yij ; θ̂b(B,π)},

with base 2 logarithm. Changing the base of the logarithm terms, we ob-
tain (13).

APPENDIX C: ADDITIONAL RESULTS FOR SECTION 5

Overlay plots of the fitted f̂ to the 200 simulations generated with the test
functions corresponding to ObsID 12297, 12298, 12356,12357, 13251, and
13259 are shown in Figure 6. These test functions share the same effective
area curve depicted in Figure 2(d).
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Fig 6. Similar to Figure 2 but for test functions 12297 (77%), 12356 (100%), 13251 (69%),
12298 (90%), 13259 (62%), and 12357 (100%). Results are only plotted for simulations
with B̂ = B and π̂ = π; the proportions of simulations for which B̂ = B and π̂ = π
shown in the parentheses. Plots for the concatenated test function are not reported.
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