103 research outputs found

    Millicurrent stimulation of human articular chondrocytes cultivated in a collagen type-I gel and of human osteochondral explants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Here we investigate the effect of millicurrent treatment on human chondrocytes cultivated in a collagen gel matrix and on human osteochondral explants.</p> <p>Methods</p> <p>Human chondrocytes from osteoarthritic knee joints were enzymatically released and transferred into a collagen type-I gel. Osteochondral explants and cell-seeded gel samples were cultivated in-vitro for three weeks. Samples of the verum groups were stimulated every two days by millicurrent treatment (3 mA, sinusoidal signal of 312 Hz amplitude modulated by two super-imposed signals of 0.28 Hz), while control samples remained unaffected. After recovery, collagen type-I, type-II, aggrecan, interleukin-1β, IL-6, TNFα and MMP13 were examined by immunohistochemistry and by real time PCR.</p> <p>Results</p> <p>With regard to the immunostainings 3 D gel samples and osteochondral explants did not show any differences between treatment and control group. The expression of all investigated genes of the 3 D gel samples was elevated following millicurrent treatment. While osteochondral explant gene expression of col-I, col-II and Il-1β was nearly unaffected, aggrecan gene expression was elevated. Following millicurrent treatment, IL-6, TNFα, and MMP13 gene expression decreased. In general, the standard deviations of the gene expression data were high, resulting in rarely significant results.</p> <p>Conclusions</p> <p>We conclude that millicurrent stimulation of human osteoarthritic chondrocytes cultivated in a 3 D collagen gel and of osteochondral explants directly influences cell metabolism.</p

    Seasonal variations in pore water and sediment geochemistry of littoral lake sediments (Asylum Lake, MI, USA)

    Get PDF
    BACKGROUND: Seasonal changes in pore water and sediment redox geochemistry have been observed in many near-surface sediments. Such changes have the potential to strongly influence trace metal distribution and thus create seasonal fluctuations in metal mobility and bioavailability. RESULTS: Seasonal trends in pore water and sediment geochemistry are assessed in the upper 50 cm of littoral kettle lake sediments. Pore waters are always redox stratified, with the least compressed redox stratification observed during fall and the most compressed redox stratification observed during summer. A 2-step sequential sediment extraction yields much more Fe in the first step, targeted at amorphous Fe(III) (hydr)oxides (AEF), then in the second step, which targets Fe(II) monosulfides. Fe extracted in the second step is relatively invariant with depth or season. In contrast, AEF decreases with sediment depth, and is seasonally variable, in agreement with changes in redox stratification inferred from pore water profiles. A 5-step Tessier extraction scheme was used to assess metal association with operationally-defined exchangeable, carbonate, iron and manganese oxide (FMO), organic/sulfide and microwave-digestible residual fractions in cores collected during winter and spring. Distribution of metals in these two seasons is similar. Co, As, Cd, and U concentrations approach detection limits. Fe, Cu and Pb are mostly associated with the organics/sulfides fraction. Cr and Zn are mostly associated with FMO. Mn is primarily associated with carbonates, and Co is nearly equally distributed between the FMO and organics/sulfide fractions. CONCLUSION: This study clearly demonstrates that near-surface lake sediment pore water redox stratification and associated solid phase geochemistry vary significantly with season. This has important ramifications for seasonal changes in the bioavailability and mobility of trace elements. Without rate measurements, it is not possible to quantify the contribution of various processes to natural organic matter degradation. However, the pore water and solid phase data suggest that iron reduction and sulfate reduction are the dominant pathways in the upper 50 cm of these sediments

    Soil carbon loss by experimental warming in a tropical forest

    Get PDF
    Tropical soils contain one-third of the carbon stored in soils globally1, so destabilization of soil organic matter caused by the warming predicted for tropical regions this century2 could accelerate climate change by releasing additional carbon dioxide (CO2) to the atmosphere3,4,5,6. Theory predicts that warming should cause only modest carbon loss from tropical soils relative to those at higher latitudes5,7, but there have been no warming experiments in tropical forests to test this8. Here we show that in situ experimental warming of a lowland tropical forest soil on Barro Colorado Island, Panama, caused an unexpectedly large increase in soil CO2 emissions. Two years of warming of the whole soil profile by four degrees Celsius increased CO2 emissions by 55 per cent compared to soils at ambient temperature. The additional CO2 originated from heterotrophic rather than autotrophic sources, and equated to a loss of 8.2 ± 4.2 (one standard error) tonnes of carbon per hectare per year from the breakdown of soil organic matter. During this time, we detected no acclimation of respiration rates, no thermal compensation or change in the temperature sensitivity of enzyme activities, and no change in microbial carbon-use efficiency. These results demonstrate that soil carbon in tropical forests is highly sensitive to warming, creating a potentially substantial positive feedback to climate chang

    Testate amoeba response to acid deposition in a Scottish peatland

    Get PDF
    Peatlands around the world are exposed to anthropogenic or volcanogenic sulphur pollution. Impacts on peatland microbial communities have been inferred from changes in gas flux but have rarely been directly studied. In this study, the impacts of sulphuric acid deposition on peatland testate amoebae were investigated by analysis of experimental plots on a Scottish peatland almost 7 years after acid treatment. Results showed reduced concentration of live amoebae and changes in community structure which remained significant even when differences in pH were accounted for. Several possible explanations for the impacts can be proposed including taphonomic processes and changes in plant communities. Previous studies have inferred a shift from methanogenic archaea to sulphate-reducing bacteria in sulphate-treated peats; it is possible that the impacts detected here might relate to this change, perhaps through testate amoeba predation on methanotrophs

    Litter quality and its response to water level drawdown in boreal peatlands at plant species and community level

    Get PDF
    Changes in the structure of plant communities may have much more impact on ecosystem carbon (C) cycling than any phenotypic responses to environmental changes. We studied these impacts via the response of plant litter quality, at the level of species and community, to persistent water-level (WL) drawdown in peatlands. We studied three sites with different nutrient regimes, and water-level manipulations at two time scales. The parameters used to characterize litter quality included extractable substances, cellulose, holocellulose, composition of hemicellulose (neutral sugars, uronic acids), Klason lignin, CuO oxidation phenolic products, and concentrations of C and several nutrients. The litters formed four chemically distinct groups: non-graminoid foliar litters, graminoids, mosses and woody litters. Direct effects of WL drawdown on litter quality at the species level were overruled by indirect effects via changes in litter type composition. The pristine conditions were characterized by Sphagnum moss and graminoid litters. Short-term (years) responses of the litter inputs to WL drawdown were small. In longterm (decades), total litter inputs increased, due to increased tree litter inputs. Simultaneously, the litter type composition and its chemical quality at the community level greatly changed. The changes that we documented will strongly affect soil properties and C cycle of peatlands.Peer reviewe
    corecore