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 12 

Tropical soils contain a third of global soil carbon1, so destabilization of soil organic matter 13 

caused by the approximate 4°C warming predicted for tropical regions this century could 14 

accelerate climate change by releasing additional carbon dioxide (CO2) to the atmosphere2-5. 15 

Theory predicts that warming should cause only modest carbon loss in tropical soils relative to 16 

those at higher latitudes4,6, but there have been no warming experiments in tropical forests to 17 

test this prediction7. Here we show that in situ experimental warming of a lowland tropical forest 18 

soil on Barro Colorado Island, Panama, caused an unexpectedly large increase in soil CO2 19 

emissions. Two years of warming of the whole soil profile by 4oC increased CO2 emission by 55% 20 

compared to soils at ambient temperature. The additional CO2 originated from heterotrophic 21 

rather than autotrophic sources and equated to a loss of 8.2 ± 4.2 (± 1 SE) Mg C ha-1 yr-1 from 22 

the breakdown of soil organic matter. During this time, we detected no acclimation of respiration 23 

rates, no thermal compensation or change in temperature sensitivity of enzyme activities, and 24 

no change in microbial carbon-use efficiency. These results demonstrate a high sensitivity of soil 25 

carbon in tropical forests to warming, which represents a potentially substantial positive 26 

feedback to climate change. 27 



Tropical forests play a large role in the global carbon (C) cycle, because they exchange more 28 

CO2 with the atmosphere than any other ecosystem, contain over two-thirds of terrestrial plant 29 

biomass8 and harbour over a quarter of global soil C (ref. 1). Between 30 and 50% of the C respired 30 

from tropical forests originates from soil, most of which is derived from the decomposition of organic 31 

matter9-11. Thus, even a small increase in respiration from tropical forest soils could have a large effect 32 

on atmospheric CO2 concentrations, with consequences for global climate. 33 

There is considerable concern that increased global temperatures will destabilize soil C and 34 

increase the flux of CO2 from soil to the atmosphere2-5. Experiments in temperate and arctic regions 35 

have consistently found that short-term (< 2 years) warming increases the soil CO2 efflux by an average 36 

of 46 ± 8% compared to soil at ambient temperature2,3,5,12. For the tropics, it is expected that the 37 

response of soil C to warming will be smaller than at higher latitudes, because kinetic theory predicts 38 

that the intrinsic temperature sensitivity of reaction rates is reduced at higher temperatures4,13, and 39 

meta-analyses of warming experiments have shown that the temperature sensitivity of soil C loss 40 

increases with latitude6. However, the extent to which intrinsic temperature sensitivity translates into 41 

actual (‘apparent’) temperature sensitivity depends on co-variation of other environmental factors that 42 

influence respiration, such as soil moisture and substrate availability4,14. As there have been no in situ 43 

warming experiments conducted in tropical forests, the apparent temperature sensitivity of soil organic 44 

matter in this biome remains unknown. As a result, earth-system models continue to use kinetic theory 45 

to define the temperature sensitivity of soil C15, limiting how they predict the response of tropical 46 

forests to global environmental change16,17. 47 

Several factors could influence the apparent temperature sensitivity of soil organic matter. For 48 

example, soil warming is typically accompanied by soil drying, which can either reduce respiration in 49 

aerobic soils by reducing water availability, or increase respiration in waterlogged soils by increasing 50 

oxygen availability4,7,14. Warming can also affect respiration rates by inducing changes in biotic 51 

processes, such as the physiological response or community composition of microbes, or changes in 52 



substrate availability to decomposers13. In experiments performed at higher latitudes, temperature-53 

adaptive or compensatory responses of microbial communities and enzyme activities have been shown 54 

to modulate the effect of warming on the soil C cycle2,13. In the tropics, future novel warm temperature 55 

maxima could exceed critical biochemical thresholds7,18, with added complexity emerging from altered 56 

interactions among species-rich plant and microbial communities19, and from covarying changes in 57 

hydrological and nutrient cycles7. 58 

Here, we present results from the first soil warming experiment in a lowland tropical forest 59 

(SWELTR: Soil Warming Experiment in Lowland Tropical Rainforest). The experiment tests the 60 

response of the whole soil profile to the 4oC warming predicted for tropical latitudes by the end of this 61 

century16 (Fig. 1A; Extended Data Figs. 1-3). SWELTR consists of five pairs of circular control and 62 

warmed plots, evenly distributed within approximately 1 ha of seasonally-moist lowland tropical forest 63 

on Barro Colorado Island, Panama. The soils are moderately weathered Dystric Eutrudepts 64 

(Inceptisols) that have developed on the volcanic facies of the Bohio Formation (Extended Data Table 65 

1, see methods). Each warmed plot has a ground surface area of ~20 m2 heated to 1.2 m depth, resulting 66 

in a total of 120 m3 of warmed soil across the experiment. 67 

Two years of experimental warming increased soil CO2 emissions by 55%, from 18.8 ± 1.9 Mg 68 

C ha-1 yr-1 in control plots to 29.2 ± 5.0 Mg C ha-1 yr-1 in warmed plots (treatment effect, p < 0.05; Fig. 69 

2; Extended Data Table 2). The soil CO2 emission rate from unheated (i.e., control) plots is 70 

representative of tropical forests worldwide (8–40 Mg C ha-1 yr-1), including in the Amazon basin (12–71 

24 Mg C ha-1 yr-1)20. Using exclusion and ingrowth cores to partition respiration from heterotrophic 72 

(soil-derived) and autotrophic (root-derived) sources, we find that the increase in CO2 efflux was 73 

derived predominantly from heterotrophic sources, whether from the decomposition of fresh-litter 74 

inputs or pre-existing soil organic matter (Figs. 2-3, Extended Data Fig. 5). Soil-derived respiration 75 

increased from 12.0 ± 2.1 Mg C ha-1 yr-1 in control plots to 20.1 ± 4.2 Mg C ha-1 yr-1 in warmed plots 76 

(a 68% increase of 8.2 Mg C ha-1 yr-1; treatment effect, p < 0.05), while root-derived respiration was 77 



not altered significantly (p = 0.21; 6.8 ± 1.2 and 9.0 ± 3.4 Mg C ha-1 yr-1 in control and warmed plots, 78 

respectively; Fig. 3, Extended Data Table 3). 79 

It is possible that the large warming-induced increase in soil CO2 efflux was due in part to soil 80 

drying, because the warmed plots were slightly drier than the controls, particularly in the early wet 81 

season (Extended Data Fig. 3). In wet soils, soil drying can increase respiration by increasing the 82 

supply of oxygen to heterotrophic microbes. In contrast, soil drying under aerobic conditions can 83 

reduce heterotrophic respiration by promoting water limitation20. Here, we find a marginally non-84 

significant effect of soil moisture on CO2 efflux across seasons (Extended Data Table 2; annual p = 85 

0.69, wet-season p = 0.07 and dry-season p = 0.06), consistent with the parabolic relationship of CO2 86 

flux with soil moisture for this site20. However, there was no direct effect of warming on soil moisture 87 

(for surface soils p = 0.19, whole-profile p = 0.24; Extended Data Tables 4-5), and the interaction 88 

between soil moisture and warming in the CO2 efflux model was not significant (annually and for 89 

individual seasons; p > 0.2; Extended Data Table 2), indicating that the warming effect on CO2 efflux 90 

was not influenced by soil moisture. Furthermore, soil moisture was not correlated with soil CO2 efflux 91 

in the warmed plots (Extended Data Fig. 3); and drying during the early wet season in warmed soil 92 

(Extended Data Fig. 3) should decrease rather than increase CO2 efflux, because the soil was aerobic 93 

during this period and below the moisture content of 0.45 m3 m-3 at which soil CO2 efflux peaks in this 94 

forest20. Our data thus show that although soil moisture influenced soil CO2 efflux and that warmed 95 

plots were slightly drier than control plots, particularly during the early wet season, this did not 96 

contribute significantly to the increased CO2 efflux from warmed soil. 97 

There was no moderation of the warming-induced increase in soil CO2 efflux over the two 98 

years of the experiment. Such a moderation might be expected in the long-term, whether through 99 

substrate limitation, adaptation of microbial communities (through changes in microbial carbon-use-100 

efficiency; CUE) or thermal compensation of enzyme activities (reduced Vmax at higher 101 

temperatures)2,13,21. We found no reduction in extractable or mineralized nitrogen or phosphorus with 102 



warming, as would be expected under nutrient limitation (Extended Data Figs. 6-7). Almost all 103 

hydrolytic enzymes were unaffected by warming (Extended Data Figs. 6-7), except for β-xylanase – 104 

an enzyme involved in hemicellulose degradation – for which activity increased with warming during 105 

the wet season, an opposite response to that predicted by thermal compensation19. The temperature 106 

sensitivity of enzyme activity (Q10 of Vmax) was unaffected by warming (Extended Data Fig. 8), 107 

indicating no dampening effect on soil C breakdown as a result of decreased enzyme flexibility (which 108 

would cause decreased affinity of the enzyme for its substrate), as expected at warmer temperatures22. 109 

Microbial CUE, which broadly represents C stabilised in biomass relative to C lost in respiration and 110 

can promote long-term (decadal) soil C loss2,21, was unaffected by warming (Treatment effect, p = 111 

0.37; Extended Data Figs. 6-7). Indeed, microbial C increased with warming at the annual scale 112 

(treatment effect, annual scale, p = 0.02; with a marginally non-significant increase at the seasonal 113 

scale, p < 0.1 Extended Data Fig. 7), suggesting slightly increased growth in response to greater 114 

organic matter turnover in the absence of nutrient constraints to C degradation, which did not translate 115 

into changes in CUE. 116 

Our finding that tropical forest soil C has a high apparent temperature sensitivity challenges 117 

the prevailing expectation that the temperature sensitivity of soil C is lower in the tropics compared to 118 

cooler ecosystems at higher latitudes4,6. The 55% increase in total soil CO2 emissions we report here 119 

following two years of 4oC whole-profile warming (18.8 to 29.2 Mg C ha-1 yr-1) is larger than that 120 

found in a temperate forest using a similar whole-soil-profile experimental design (34–37% increase 121 

over two years of 4oC whole-profile warming; 13 to 17.5 Mg C ha-1 yr-1)5. In addition, the rate of 122 

additional soil C loss (8.2 Mg C ha-1 yr-1) is greater than for all the studies in a recent meta-analysis of 123 

surface-only soil warming experiments at higher latitude sites (all loss rates < 5 Mg C ha-1 yr-1)3. The 124 

expectation that the temperature sensitivity of soil C breakdown is lower in the tropics compared to 125 

higher latitudes, based in part on kinetic theory and commonly used to describe soil C responses in 126 

earth-system models15, is therefore not consistent with the (‘apparent’)4,14 temperature sensitivity of 127 



the breakdown of tropical forest soil C reported here. Our results are, however, consistent with recent 128 

atmospheric and satellite measurements, which have shown a high sensitivity of ecosystem-scale C 129 

cycling in tropical regions in response to interannual temperature variation23,24. Our findings suggest 130 

that soils contribute a major component of these ecosystem-scale responses to warming. 131 

This high apparent temperature sensitivity of tropical forest soil C under in situ experimental 132 

warming must arise through the temperature response of covarying ecosystem properties rather than 133 

as the sole consequence of intrinsic kinetic processes. Although our data do not provide conclusive 134 

mechanistic evidence for the marked increase in soil C loss from warmed soil, several findings point 135 

to a possible explanation: i) the general absence of thermal compensation in enzyme activities (no 136 

decrease in Vmax); ii) no change in the temperature sensitivity of enzymes under warming (no decrease 137 

in Q10 of Vmax); and iii) no moderating thermal response of microbial CUE (Extended Data Figs. 6-138 

7)21,25,26. Together, our results indicate that organic matter degradation increased under warming with 139 

no moderating responses or acclimation during our study period among microbial communities, or the 140 

enzymes they synthesise. 141 

This surprisingly large loss of soil C from warmed soil represents a substantial positive climate 142 

feedback over the period of this study. The additional C loss from warming observed here is of similar 143 

magnitude to annual litterfall-C inputs at this site (5–7 Mg C ha-1 yr-1)27 and is equivalent to 144 

approximately 13% of the total soil C stock, or 30% of gross primary productivity (27.5 Mg C ha-1 yr-145 

1)28. Extrapolation of the first two years of C loss in our experiment  across the entire tropical forest 146 

soil C stock (502 Pg C)1 indicates a global loss of >65 Pg C with 4oC warming this century, which is 147 

consistent with estimated C loss based on a five-year soil translocation experiment in tropical forests 148 

elsewhere29. In the light of these findings, earlier estimates of global soil C loss under 4oC warming, 149 

which were based on experiments performed at higher latitudes (120–190 Pg C)2,30, underestimate the 150 

magnitude of this global earth-atmosphere feedback. 151 



We expect that the rate of soil C loss will eventually decline in warmed soils as substrate 152 

limitation increases, but we do not know how long this will take, nor whether the long-term soil C 153 

balance will be affected by plant-soil interactions or changes in soil microbial communities as they 154 

adapt to warmer temperatures2,12,13,21. The nature of these longer-term responses will determine the 155 

strength of this positive earth-atmosphere feedback, already significant in the short-term, in 156 

contributing to further climate warming. 157 

 158 
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266 

Figure 1│ Mean differences in (a) soil temperature and (b) soil moisture content between control and 267 

warmed plots by depth. Data are the means of continuous measurements from integrated soil temperature 268 

and moisture probes (Campbell CS655) for the two-year period after the warming treatment began (Dec 2016 269 

– Dec 2018). The error bars represent one standard error of the temporal variation across five plots (Treatment 270 

effect p < 0.001 for all comparisons, based on the temporal variation across n = 5 plots). The vertical lines 271 

show the mean soil temperature across the soil profile, which is 26.18oC for control plots and 30.14oC for 272 

warmed plots (3.97oC difference). 273 
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 282 

Figure 2│ Soil CO2 efflux from control and warmed soils over two years. Panel (a) shows the total soil CO2 283 

flux during the study period (2017-2019). Panel (b) shows the total soil CO2 flux partitioned into soil-derived 284 

and root-derived components (b), relative to the beginning of the warming treatment. Measurements were made 285 

every one or two weeks. Points represent the mean value of five plots, with error bars representing one standard 286 

error of the spatial variation. The box plots represent the mean and temporal variation over sequential 100-day 287 

periods to show seasonal dynamics. The dotted vertical line (relative day = –150) is when installation and testing 288 

of warming plots began (during this period each plot was warmed by 4oC relative to controls for a period of 1-289 

2 weeks); the dashed vertical line (relative day = 0; 1 November 2017) shows when all five warming plots were 290 

switched on permanently. The shaded areas represent dry seasons (1 January–1 April). Soil CO2 efflux was 291 

significantly higher in warmed plots for annual data and for dry or wet seasons individually (Extended Data 292 

Table 2). The error bars for points represent one standard error of the spatial variation (n = 5 plots); the error 293 

bars for boxes represent one standard error of the temporal variation (averaged over 100 days).  294 



 295 

 296 

 297 

Figure 3 │ The annual soil CO2 efflux (total), partitioned into soil-derived and root-derived components.  298 

a. The pre-treatment period (Jan-May 2016; predominantly dry-season). b. The two years with warming. The 299 

figures show total CO2 (Total) and the root-derived and soil-derived components calculated using CO2 efflux 300 

from partition cores (equations 1-2). Differences between control and warmed plots are shown by asterisks 301 

where p  0.05 or as non-significant (ns); determined using mixed effect models (Extended Data Tables 2-3). 302 

The error bars represent one standard error of the variation across the five plots over the study period. 303 
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METHODS 318 

 319 

Site and experiment. The experiment is situated in approximately 1 ha area of seasonally moist 320 

lowland tropical forest on Barro Colorado Island, Panama31. Within the plot area the dominant tree 321 

species include Anarcardium excelsum and Poulsenia armata. The soils are Inceptisols (Fine, 322 

isohyperthermic, Dystric Eutrudepts) that are rich in clay (~54% profile-weighted clay concentration) 323 

and secondary metal oxides and are developed on the volcanic facies of the Bohio Formation, a basaltic 324 

conglomerate of Oligocene age32. Although these moderately weathered Inceptisols are less infertile 325 

than soils under large areas of lowland tropical forests, Inceptisols still account for 14% of total land 326 

area in the tropics (Ultisols and Oxisols account for 20% and 23%, respectively)33, and soil respiration 327 

in the control plots in our experiment is comparable to that in lowland tropical forests in general, 328 

including those on Ultisols and Oxisols (see main text, ref. 20).  329 

The SWELTR experiment consists of 10 circular plots (five paired plots ‘warm’ and ‘control’). 330 

Each plot measures 5 m diameter, with approximately 10 m between each plot-pair and a minimum of 331 

20 m between different plot-pairs. The warmed plots contain two heating structures, each consisting 332 

of eight 1-m long stainless-steel rods, connected by approximately 50 cm of flexible stainless-steel 333 

conduit. We used stainless-steel T-junctions at the top of each rod (adjoining the flexible conduit) and 334 

conical caps at the bottom of each rod. The final structure was 1.2 m tall. Inside each of the structures, 335 

we threaded 25 m of heating cable (SLMCAB10120BF, Briskheat, Columbus, USA) and filled the 336 

remaining space in the rods and conduit with quartz sand, selected for its high thermal conductivity. 337 

The complete structure was welded to seal the heating cable and sand inside. Two of these structures 338 

were buried around a 3.5 diameter circumference, with the top of the flexible conduit 5 cm 339 

belowground. Thus, each plot contained 50 m of heating cable inserted to 1.2 m depth, encircling a 3.5 340 

m diameter area; with an effective heated plot area of 5 m diameter. The experiment heats 341 



approximately 120 m3 soil in total (5 plots x 5 m diameter by 1.2 m depth). The plot design and heating 342 

methodology follows that of Hanson et al. (ref. 34) and Hicks Pries et al. (ref. 5). 343 

 344 

Temperature control. Each warming and control plot was connected to a thermostat system, which 345 

maintained soil temperature in the warmed plots at 4oC above ambient temperature. The thermostat 346 

system consisted of three integrated temperature and moisture sensors per plot (CS655 Reflectometer, 347 

Campbell Scientific) inserted to 0-20, 50-70 and 100-120 cm depth at the mid-radius point in each 348 

plot, which were connected to a control unit (one control unit for each plot pair; five in total). The 349 

control units consisted of waterproof (IP68) enclosures containing a solid-state power controller 350 

(DA10-24C0-0000, Watlow), relay (12V single channel), datalogger (CR1000, Campbell Scientific) 351 

and 12V and 120V power supply. Temperature in each warmed plot was therefore maintained at 4oC 352 

above the temperature in each corresponding paired control plot, based on the average temperature 353 

from 0-120 cm depth at the mid-radius point in each plot. The average temperature differential over 354 

two years was 3.97oC, which was the average of 2.7oC at 0-20 cm depth, 4.0oC at 50-70 cm depth and 355 

5.2oC at 100-120 cm depth. 356 

This experimental design has been shown to warm the soil approximately uniformly across the 357 

soil volume, with minor anomalies of warmer soil very close to the heating rods (< 10 cm) and slightly 358 

cooler surface soils due to heat-transfer to the air5, 34. Therefore, surface soils were slightly cooler 359 

compared to subsoils, although the response of surface rather than subsoils will likely dominate the 360 

warming response across the soil profile because they contain greater organic matter (two thirds of the 361 

C stock occurs in the upper 50 cm of the soil profile; Extended data Table 1). The heating structures 362 

were installed during May-July 2016, and plots were tested during June-October 2016. The testing 363 

phase consisted of heating each plot by 4oC for approximately 2-week periods. The experiment was 364 

switched on in full on 1 November 2016. 365 

 366 



Soil gas-exchange and partitioning. Soil CO2 efflux was measured every two weeks at four 367 

systematically distributed locations within each plot from 2016 until 2019 using an infra-red gas 368 

analyser (IRGA Li-8100; LI-COR Biosciences, Nebraska, USA). The soil collars for soil CO2 efflux 369 

measurements were assigned to zones within each plot (‘centre 1’, centre 2’, ‘side 1’ and ‘side 2’) and 370 

were relocated randomly within each zone every three months, for long-term within-plot spatial 371 

independence. Soil CO2 efflux was also measured every two weeks for four root-partition cores per 372 

plot (2 × root-exclusion and 2 × root-ingrowth) to determine soil- and root-derived components of the 373 

CO2 efflux. At the same time as soil CO2 efflux measurements, we measured soil temperature (using 374 

a HI98509 thermometer probe; Hanna Instruments, USA) and soil moisture (using a Thetaprobe; 375 

Delta-T, Cambridge, UK) at 0-20 cm soil depth for a random location within 1 m radius of each soil 376 

collar, or within the root-partition cores. 377 

Root-exclusion cores were made from PVC tubing (30 cm height, 10 cm diameter) with a 1 378 

µm nylon mesh base for drainage. Root-ingrowth cores (i.e. disturbance controls) had additional 379 

windows (~340 cm2) covered with 2 mm mesh around the sides35. In each plot, two root-exclusion 380 

cores and two root-ingrowth cores were buried within each plot, approximately 30 cm from the heating 381 

cable (where the soil profile is warmed on average by 4oC). 382 

The percentage contributions of fine roots and rhizo-microorganisms (root-derived) and free-383 

living heterotrophic microorganisms (soil-derived) to the total soil CO2 efflux were calculated as 384 

follows:  385 

Equation 1:  Soil-derived (%) = (root-exclusion core CO2 efflux / root-ingrowth core CO2 efflux) x 386 

100 387 

Equation 2:  Root-derived (%) = 100 - Soil-derived (%) 388 

 389 

Total soil CO2 efflux measured for soil collars was multiplied by the results from equations 1–2 to 390 

estimate the absolute contributions of root-derived (roots, rhizo-microbial and mycorrhizal) and soil-391 



derived (free-living microbial through the decomposition of litter and soil organic matter) 392 

components35. The partition cores were buried to 0-25 cm depth, where 95% fine roots occur36 – 393 

therefore the soil component consists of soil-derived CO2 from the entire soil profile (with very 394 

marginal contribution from fine roots at > 20 cm depth). 395 

 396 

Soil properties. Soil was sampled before the experimental treatments began (to 100 cm depth; 397 

Extended Data Table 1) and then every three months following the beginning of the experiment (0-10 398 

cm; average responses in Extended Data Fig. 4) within the plots at a point where the surface soil is 399 

evenly heated (at approximately 30 cm distance from the heating structure), and analysed for soil 400 

properties: total elements, available nutrients, microbial CNP and enzyme activities using standard 401 

procedures (see SI methods). We calculated microbial carbon-use-efficiency (CUE) using microbial 402 

CNP and enzyme activity data using a stoichiometric method37. Here we describe the responses 403 

following two years of warming, by using the average change in soil properties over two years (average 404 

of eight temporal measurements per plot, with n = 5 per plot). Full details on these analytical methods 405 

are provided in SI. 406 

 407 

Statistical analyses. Treatment (warming) effects on time-averaged total and partitioned CO2 408 

emissions and other soil properties (nutrients, microbial properties), were tested using ANOVA. 409 

Treatment effects on soil CO2 emissions were further tested using mixed effects models with CO2 410 

emission as the response variable and warming-treatment, soil moisture, season, warming × soil 411 

moisture and season × soil moisture as fixed effects and plot number as random effect38. We tested 412 

both with and without a repeated measures effect because within-plot soil CO2 efflux measurements 413 

were partially spatially independent (within-plot locations of soil collars were changed every three 414 

months, see soil gas exchange measurements above). Treatment effects on partitioned root- and soil-415 

derived CO2 efflux components were tested using repeated measures mixed models with time and plot 416 



number as random effects. Treatment effects on soil-surface moisture (0-20 cm depth) were tested 417 

using mixed effects models with soil moisture as the response variable and warming-treatment, season, 418 

warming × season as fixed effects and plot number as random effect. For whole-profile soil moisture 419 

we included time as an additional random effect (soil-surface moisture and temperature measurements 420 

were fully independent, whereas whole-profile measurements were repeated measures of fixed points). 421 

Further details on these approaches are provided in SI. All statistical analyses were performed in R 422 

(version 3.5.2). 423 
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