1	AECO678		
2	Testate amoebae response to acid deposition in a Scottish peatland.		
3			
4	Richard J. Payne		
5	Department of Environmental & Geographical Sciences, Manchester Metropolitan		
6	University, Chester Street, Manchester, M1 5GD, UK.		
7	E-mail: <u>r.payne@mmu.ac.uk</u>		
8			
9	School of Environment and Development, University of Manchester, Oxford Road,		
10	Manchester M13 9PL, UK.		
11			
12	ABSTRACT		
13			
14	Peatlands around the world are exposed to anthropogenic or volcanogenic sulphur		
15	pollution. Impacts on peatland microbial communities have been inferred from		
16	changes in gas flux but have rarely been directly studied. In this study the impacts of		
17	sulphuric acid deposition on peatland testate amoebae were investigated by analysis of		
18	experimental plots on a Scottish peatland almost seven years after acid treatment.		
19	Results showed reduced concentration of live amoebae and changes in community		
20	structure which remained significant even when differences in pH were accounted for.		
21	Several possible explanations for the impacts can be proposed including taphonomic		
22	processes and changes in plant communities. Previous studies have inferred a shift		
23	from methanogenic archaea to sulphate reducing bacteria in sulphate-treated peats; it		
24	is possible that the impacts detected here might relate to this change, perhaps through		
25	testate amoeba predation on methanotrophs.		
26			
27	KEYWORDS: Protists, Mires, Wetlands, Volcanic Impacts, Sulphate deposition,		
28	Methanogenesis.		
29			
30	INTRODUCTION		
31			
32	Many peatlands in, or downwind of, industrialised regions have been exposed		
33	to acidic sulphur pollution over recent centuries. Impacts have been suggested in		
34	terms of changes to the pH (Proctor and Maltby 1998, Skiba et al. 1989) and		

1 decomposition rates of peats (Hemond et al. 1980, Sanger et al. 1994), DOC flux 2 (Sanger et al. 1994), methane production (Nedwell and Watson 1995; Watson and 3 Nedwell 1998; Gauci et al. 2002) and the metabolic processes (Ferguson and Lee 4 1979), growth rate (Ferguson and Lee 1980; Rochefort et al. 1990) and community 5 structure (Tallis 1964; Ferguson and Lee 1980) of peatland plants. The potential scale 6 of such impacts is nowhere more apparent than the Pennine blanket mires of northern 7 England where heavy sulphur-loading combined with other pollutants since the 8 beginning of the industrial revolution has led to the near-total elimination of 9 Sphagnum and consequent drastic landscape change (Tallis 1964; Ferguson and Lee 10 1983; Lee 1998).

11 Although impacts of sulphur deposition on peatland microbial communities 12 have been inferred from changes in gas flux, few studies have directly investigated 13 microbial community change. This study focuses on testate amoebae, a group of 14 unicellular micro-organisms (protists) which are highly abundant in damp to fully 15 aquatic habitats around the world, and particularly in peatlands. Testate amoebae are 16 increasingly being recognised as an important component of many ecosystems by 17 virtue of their high abundance (up to 30% of microbial biomass in peatlands: Mitchell 18 et al. 2003) and rapid turnover (e.g. Aoki et al. 2007). As testate amoebae lie towards 19 the top of the microbial foodweb and as a group have broad feeding preferences 20 (Gilbert et al. 2000) it is likely that testate amoebae will be sensitive to changed 21 abundance and community structure in many groups at lower trophic levels.

Recent studies have highlighted the sensitivity of testate amoebae to pollution, including deposition of heavy metals (Patterson et al. 1996; Reinhardt et al. 1998; Nguyen-Viet et al. 2007; 2008), nutrients (Gilbert et al. 1998a&b, Mitchell 2004), and atmospheric pollutants (Nguyen-Viet et al. 2004, Balik 1991). This work suggests both the potential of testate amoebae for biomonitoring and also that pollution, both anthropogenic and natural, may complicate the use of testate amoebae as indicators of other variables.

Given the potential impacts of sulphate deposition on both the abiotic and
biotic environment of testate amoebae in peatlands it seems probable that sulphate
deposition would lead to changes in abundance and community structure. There is
some evidence from field surveys for a relationship between testate amoeba
communities and sulphate concentrations. Opravilova and Hajek (2006) and Mitchell
et al. (2000b) found sulphate to explain a statistically significant proportion of

1 variance in testate amoeba communities. Swindles et al. (2009) looking at peatlands in 2 northern Ireland and Lamentowicz et al. (2008) looking at a peatland in Poland found 3 sulphate was not a significant environmental variable. In the Polish study this result 4 might be explained by limited variance as only one site was considered, in the 5 northern Irish study the result might be explained by low sulphate concentrations in 6 relatively unpolluted peatlands. Other possible evidence for a relationship between 7 SO₄ and testate amoebae comes from an association with Sr, which is correlated with 8 SO₄ in separate analyses, in an Israeli wetland (Payne et al in press).

9 In an experimental approach Payne et al. (2009) investigated the testate 10 amoeba communities of experimental plots in a Scottish peatland subject to sulphate 11 deposition. Sodium sulphate was applied for a period of 18 months and 25 samples 12 extracted from each of six plots (three treated and three control) after more than ten 13 years. Results showed statistically significant differences between treated and control 14 plots, particularly characterised by reduced abundance of small bacterivorous taxa 15 (Euglypha rotunda type, Corythion dubium, Trinema lineare and Trinema 16 *complanatum*). Also apparent was a reduced concentration of live amoebae and 17 proportion of tests occupied by living amoebae.

18 In the pre-industrial era the heaviest sulphate loadings on peatlands would 19 have derived from volcanic eruptions. Such impacts are little-considered but the 20 historical record shows extremely severe impacts of volcanic acid-loading on plant 21 communities even at great distance from volcanic sources (Grattan and Charman 22 1994; Grattan and Gilbertson 1994; Grattan and Pyatt 1999) and the presence of 23 (crypto)tephra deposits preserved in peatlands around the world testifies to the large 24 areas of peatlands which are within reach of volcanic products. Some 25 palaeoecological records have shown testate amoeba community changes coincident 26 with tephra deposition which might represent a response to volcanogenic sulphate 27 deposition (Dwyer and Mitchell 1997; Payne and Blackford 2008). Although 28 contemporary volcanic sulphate emissions contribute a minority of total sulphur 29 emissions these still constitute a major supply of sulphur to peatlands in many regions 30 (Langmann and Graf 2003). 31 The experimental study of Payne et al. (2009) may not be a good analogue for

the impacts of volcanic sulphate on peatlands. Sulphate was applied over a period of eighteen months and although it is possible for volcanic eruptions to produce extended periods of sulphate deposition (as for the well-documented 1783-4 eruption

1 of Laki in Iceland), in most distal regions sulphate deposition episodes will be much 2 briefer lasting a matter of hours, days or weeks. Furthermore, the sulphate was applied 3 as sodium sulphate. In real volcanic eruptions much of the sulphur deposited is likely 4 to be as sulphuric acid. By applying only sodium sulphate the previous study did not 5 simulate plant mortality and morbidity, which may well result from volcanic acid deposition and would be likely to affect microbial communities. The use of sodium 6 7 sulphate also makes it difficult to entirely exclude the possibility that impacts arose 8 from the application of sodium rather than sulphate.

9 This study aims to determine the impact of sulphuric acid deposition on 10 peatland testate amoeba communities with a particular focus on the possible response 11 to volcanogenic pollution events. The study uses previously established experimental 12 plots on a Scottish peatland, comparing the testate amoeba communities of a plot 13 treated with sulphuric acid with control plots.

14

15 SITE and METHODS

16

17 Experiments were conducted on the Moss of Achnacree, a large raised bog in 18 Argyll and Bute, western Scotland (UK Grid Reference NM9134). Peat deposits cover 19 around 7 Km^2 and average 1.9m depth, the area has a cool temperate climate with an annual rainfall of around 1500mm. Major plant species of the site include Calluna 20 21 vulgaris, Eriophorum vaginatum, Cladonia portentosa and various Sphagnum species 22 (including S capillifolium, S. magellanicum and S. papillosum). The site has been 23 subject to some peripheral peat-cutting and areas of the site have been drained for 24 agriculture. Experiments were conducted in an uncut area towards the west of the 25 main peat area, approximately 100m from South Ledaig Farm (Fig. 1).

26 A sequence of fourteen, 1x1m plots was established on the site and plots 27 subjected to deposition of acids and/or volcanic tephra in May 2002. Experiments 28 were designed to approximate possible acid deposition in Scotland following the 2310 29 ± 20 BCE (Pilcher et al. 1995) eruption of Hekla in Iceland (Hekla-4), which has been 30 implicated in major vegetation change (Blackford et al. 1992). Scenarios were derived 31 by extrapolating the scenario of Grattan and Gilbertson (1994) to the highest levels of 32 tephra deposition noted in northern Scotland (see Payne and Blackford 2005 for 33 details). The plots were re-visited at regular intervals over the subsequent two years 34 and observations of plant communities and measurements of various environmental

1 parameters undertaken (Payne and Blackford 2005, Payne et al. 2005). Drastic 2 impacts on plants were noted with most plants killed in the heaviest treated plots, but 3 the cover-estimates were insufficiently precise to allow small abundance changes to 4 be monitored (Payne and Blackford 2005). For selected plots testate amoeba 5 communities were also analysed through the experimental period but no consistent 6 changes were noted. Reasons for this lack of detectable response probably include an 7 insufficient sampling density to account for the high spatial variability of testate 8 amoeba communities and an inadequate time period given that most of the tests 9 counted were probably accumulated prior to the experimental period (Payne and 10 Blackford 2005). This study attempts to account for these problems by analysing the 11 amoeba communities of experimental plots almost seven years after acid deposition 12 and using a much higher sampling intensity.

13 At the end of the main study period in 2004, the experimental infrastructure 14 was removed in accordance with an agreement with the then landowner. The site was 15 revisited in April 2009, almost seven years after establishment of the experiments. Of the three plots with the heaviest sulphuric acid treatment (0.7 mol m⁻²) only one could 16 17 be positioned with sufficient accuracy. This plot (MAC11) was not subject to tephra 18 deposition. The impacts of the experimental treatment on plant communities could 19 still be readily determined with more bare ground than surrounding areas, no 20 Sphagnum and only immature Calluna vulgaris (see Table 1 for species composition). 21 20 samples of approximately 2x2x5 cm of surface peat were extracted from across the 22 experimental plot and returned to the laboratory. At each sampling spot depth to water 23 table (DWT) was determined by making a small hole and measuring DWT after at 24 least an hour for the water table to equilibrate. Plant species in the immediate vicinity 25 of the sampling location were also recorded. A further 10 samples were extracted 26 from one of the control plots established in the original study (MAC2) and treated 27 with only deionised water. This plot is 8m from MAC11 while testate amoeba 28 communities have been shown to exhibit spatial variability on a very fine scale 29 (Mitchell at al. 2000a). To account for this, 20 further samples were extracted from an 30 additional $1m^2$ area (here termed MAC30) situated 1 m N of MAC11. This area was 31 not a control plot in the previous studies so has not been subject to the disturbance in 32 previous sampling that plots MAC11 and MAC2 have experienced. All plots are 33 situated on hummocks and in most cases surface peat samples consisted of relatively 34 dense, humified peat.

In the laboratory approximately 1 cm^3 of the upper 1 cm of the samples 1 2 (regardless of surface vegetation) was removed and volume measured by 3 displacement in deionised water. Samples were made up to 30ml with deionised water 4 and pH measured after approximately two hours. Preparations for testate amoebae 5 followed a method based on that of Hendon and Charman (1997) but without the use of back-sieving as recommended by Payne (2009). Samples were allowed to soak for 6 7 48 hours before being stirred to disaggregate the peat matrix but were not boiled to 8 avoid killing live amoebae. Samples were subsequently sieved at 300µm and a 9 Lycopodium innoculum added (Stockmarr 1971). The <300 µm fraction was retained 10 and stored in water, samples were refrigerated until analysis. Slides were prepared by 11 mixing a drop of the prepared sample with glycerol and examined at 400X 12 magnification. 100 tests per sample were identified and counted (cf. Payne and 13 Mitchell 2008) and tests with visible cytoplasm (termed 'live individuals' although 14 truly live individuals could not be distinguished from tests with dead but undecayed 15 cellular contents) differentiated from empty (dead) tests. Taxonomy follows Charman 16 et al. (2000) except where modified by Payne et al. (2009). 17 Differences in amoeba concentration, proportion of occupied tests, species

18 richness, diversity (Shannon's 'H') and environmental variables between the treated 19 and control plots were tested using Mann-Whitney tests in PAST ver. 1.84 (Hammer 20 et al. 2001). An initial test of the difference between the testate amoeba community of 21 the treated and control plots used Analysis of Similarity (ANOSIM: Clarke 1993) 22 with a Bray-Curtis distance measure. Subsequently the multivariate data was 23 investigated using ordination techniques in Canoco vers. 4.53 (Ter Braak and 24 Šmilauer 1997-2004). Species data were Hellinger distance transformed (Rao 1995; 25 Legendre and Gallagher 2001) and taxa present in four or fewer samples were 26 removed from the dataset. Initially the data structure was investigated using Principal 27 Components Analysis (PCA); subsequently Redundancy Analysis (RDA) was used to 28 test the significance of a nominal variable for experimental treatment. pH and DWT 29 were introduced as co-variables to allow their influence to be accounted for. 30 Significance was assessed using Monte Carlo permutation tests (999 permutations). 31 These analyses were each applied to data based on percentages of all tests, 32 percentages of live individuals, concentrations of all tests and concentrations of live 33 individuals. As an additional exploration of the data structure and differences between

1	plots the percentage total tests data was subjected to cluster analysis using the Paired
2	Group Method with a Bray-Curtis similarity matrix in PAST ver. 1.84.
3	As a test of testate amoeba community changes since the end of the previous
4	studies, the amoeba community of plot MAC11 in 2009 was compared to previous
5	analyses from six intervals between 2002 and 2004, beginning one month after
6	treatment and continuing to 24 months after treatment (Payne and Blackford 2005).
7	Due to the probable issues with intra-plot spatial variability in amoeba communities
8	these samples were treated as a single group, ignoring any changes within that period.
9	Only data based on percentage of total tests was used for these analyses. Taxonomic
10	harmonisation was carried out and minor taxa eliminated from the dataset. Difference
11	between the two datasets was tested using RDA, as above, including a nominal
12	variable 'Age' for sampling period.
13	
14	
15	
16	RESULTS
17	
18	Twenty eight testate amoebae taxa (plus the rotifer Habrotrochoa
19	angusticollis, which was included in calculations) were encountered in the 50
20	samples, of which the most abundant were Assulina muscorum (21.9% of total tests),
21	Nebela tincta type (20.9%), Corythion dubium (9.4%) and Phryganella acropodia
22	type (9.3%). Some differences in amoeba community between treated and untreated
23	plots are relatively clear even in the overall abundance data (Table 2) including
24	greater abundances of Difflugia pristis type, Hyalosphenia subflava and Trigonopyxis
25	arcula in the treated plot and greater abundance of Corythion dubium in the control
26	plots. There are also differences in abundance of some taxa between the two control
27	plots (notably Heleopera rosea).
28	Mann-Whitney tests showed significant differences between treated and
29	control plots for amoeba concentrations (whether based on total individuals or only on
30	live individuals) and percentage of occupied tests (P<0.001). While the overall test
31	concentration was higher in the treated plot, the concentration of live amoebae and the
32	proportion of occupied tests were greater in the control plots. There was a significant
33	difference in pH between the treated and control plots (P<0.001) with lower values in

the treated plot (Fig. 2), there were no significant differences in species richness or
 diversity between the plots.

3 Principal components analysis shows very clear differences between the 4 treated and control samples. For data based on percentage of all tests axis one 5 effectively divides the samples into two groups with very little overlap (Fig. 3), other 6 datasets give similar results. There is good coincidence between the two sets of 7 control samples (MAC2 and MAC30) with MAC2 samples having a slight tendency 8 to higher scores on axis two. Trinema lineare, Euglypha rotunda type and Corythion 9 dubium are positively correlated with pH and negatively correlated with the 10 experimental treatment. Hyalosphenia subflava, Difflugia pristis type, Trigonopyxis 11 arcula, Heleopera petricola and Pseudodifflugia fulva type are positively correlated 12 with the experimental treatment and negatively correlated with pH. Post-hoc Mann-13 Whitney tests showed significant (P<0.05) difference in abundance (% all tests) 14 between treated and control plots for all these taxa except *P.fulva* type. 15 In Redundancy Analyses the treatment nominal variable explained a 16 significant proportion of variance with all datasets (Table 3). With 'treatment' the sole 17 environmental variable in the analysis up to 18.4% of variance was explained 18 (P=0.001). Both pH and DWT were also significant environmental variables but 19 DWT lost significance when pH was partialled out, showing co-variance between the 20 two. Consequently, only pH was used as a co-variable when testing the effect of the 21 experimental treatment. With pH partialled out the treatment nominal variable 22 explained between 4.8 and 6.7% of variance (P=0.001). More variance was explained 23 using concentration data than percentage data, suggesting that there are absolute, not 24 just relative changes in abundance. That strong relationships are apparent when using 25 data based only on living individuals is slightly surprising given that counts were low 26 (mean=10 individuals). ANOSIM shows statistically significant differences between 27 treated and control samples using all data sets (P<0.001), RANOSIM varies between 0.29 28 and 0.45. Cluster analysis results show a general correspondence of identified 29 groupings to treated and control plots but also quite marked differences among the 30 samples of the treated plot with two samples clearly differentiated from all others 31 (Table 4).

There is a significant difference between the 2009 and 2002-2004 testate amoeba community of plot MAC11, a nominal variable explains 24% of variance (P=0.001). Some of the differences between treated and control plots noted in the

1 analysis of 2009 data seem to be matched by changes over the period since previous 2 analysis (Fig. 4). So, Euglypha rotunda type and Corythion dubium [the Corythion-3 Trinema type recorded in 2002-4 probably only represents C. dubium] are reduced in 4 abundance both relative to the control plots and to the 2002-4 data. Similarly, 5 Difflugia pristis type is much increased in abundance relative to the control plots and 6 2002-4 data. These changes could be taken as indicating a continuing impact of the 7 experimental treatment in the period 2004-2009. However other changes are in 8 marked contrast to the differences to the control plots, most notably Hyalosphenia 9 subflava which in 2009 was more abundant in the treated than control plots, but much 10 less abundant than in 2002-4. It is recommended that these results are treated with 11 particular caution due to: 1. The small sample size of the 2002-2004 dataset. 2. The 12 difference in sample preparation methods, with fine-sieving used in 2002-4 and likely 13 to lead to underestimation of the abundance of the smallest taxa (Payne 2009), 3. The 14 lack of data on concentrations and differentiation of live from dead individuals in the 15 2002-4 data, 4. The probability of changes occurring within the 2002-4 period. 5. The 16 impact of non-treatment variables, particularly climatic variability over the 17 intervening period.

18

19 DISCUSSION

20

21 It is important to recognise the limited scale of this experiment. Although the 22 sampling intensity is relatively high there is no replication at plot scale as only one of 23 the treated plots could be accurately located. Complications due to prior differences 24 between plots cannot be ruled out and comparisons between plots may be complicated 25 if accumulation rates differ so the samples represent differing time periods. Results 26 should be treated with caution and further studies will be desirable to replicate the 27 findings presented here. Furthermore, the extent to which the experimental scenario 28 used here is an accurate representation of reality is also open to question (see 29 discussion in Payne and Blackford 2005), these results should probably be viewed as 30 indicating the nature of the testate amoebae response, but not necessarily the scale of 31 the response.

However, with caveats stated, this study does provide interesting results. The
 difference between acid-treated and control plots emerges very strongly in the
 analyses. The unconstrained ordination plot shows a near-perfect divide between

treated and untreated samples along axis one and the constrained ordination shows that a treatment nominal variable explains a significant, and sizeable, proportion of variance with all datasets. Despite the limitations of the experimental design the initial similarity between the treated and control plots, the distinctiveness of the changes and the similarities of the results with the experiment of Payne et al. (2009, discussed below) strongly suggest that the differences between treated and control plots are due to the experimental additions and not to any prior differences.

8 The univariate data analyses show a statistically significant difference in both 9 concentration of tests and proportion of occupied tests. However, while the proportion 10 of occupied tests and concentration of live amoebae are less in the treated than control 11 plots, the overall concentration of tests is greater in the treated than control plots. This 12 presents a curious dichotomy, suggesting a less active amoeba community but higher 13 concentrations of tests. As total test concentrations are dependent on the degree of 14 decomposition of the peat matrix the explanation for this result might be that surface 15 peat in the treated plots has decomposed more than in control plots, increasing 16 apparent test concentration. Although enhanced decomposition is a conceivable 17 impact of sulphuric-acid treatment this was not suggested by alkali-extraction 18 determined humification of near-surface peats in 2002-4 (Payne and Blackford 2005). 19 The reduced abundance of live testate amoebae here parallels response to nutrient and 20 CO₂ enrichment in peatlands (Gilbert et al. 1998a&b, Mitchell et al. 2003, Mitchell 21 2004) and H₂SO₄ treatment in a simulated stream system (Costan and Planas 1986). It 22 appears that a wide variety of environmental perturbations may lead to a reduced 23 abundance of testate amoebae.

24 In both this study and that of Payne et al. (2009) the same three taxa are 25 strongly negatively associated with the treatment: Corythion dubium, Trinema lineare 26 and *Euglypha rotunda* type. By contrast there is little agreement in the taxa which 27 respond positively. In this study the strongest positive response to sulphuric acid 28 deposition was in Difflugia pristis type, Hyalosphenia subflava and Trigonopyxis 29 arcula. In the experiments of Payne et al. (2009) the taxa showing strongest positive 30 association with sodium sulphate treatment were Hyalosphenia papilio, Arcella 31 arenaria type and Cryptodifflugia oviformis. Of these taxa A. arenaria type was 32 absent and both *H. papilio* and *C. oviformis* were minor occurrences in this study 33 (0.06% and 0.9% respectively). Of the taxa showing a positive response in this study, 34 two (D. pristis type and H. subflava) were not found at all by Payne et al. (2009) and

the third (*T. arcula*) was a very minor presence, accounting for only 0.04% of total
 tests. The difference in detected response may therefore relate to initial differences in
 community composition between the sites.

4 The three testate amoeba taxa which are deleteriously affected by the 5 experimental treatment (E. rotunda type, C. dubium and T. lineare) form a coherent 6 ecological group. All three taxa are small, with idiosome tests and are believed to be 7 largely or exclusively bacterivorous (Gilbert et al. 2000). There is relatively little 8 information on the autecology of T. arcula, H. subflava and D. pristis type. The 9 compilation of Gilbert et al. (2000) suggests T. arcula feeds on fungi and organic 10 material. There is no information on the feeding preferences of D. pristis type and H. 11 subflava but other species of Difflugia and Hyalosphenia have broad feeding 12 preferences ranging from cyanobacteria to micro-metazoa. All of these three taxa are 13 generally considered typical of dry conditions and are frequently found in hummocks. 14 However, differences in wetness cannot explain the differences in abundance of these 15 taxa observed here, there is no significant difference in DWT between plots MAC11 16 and MAC2 (P=0.8) while there are very significant differences in abundance of all 17 these taxa (P<0.005). Curiously, the increased abundance of D. pristis type in these 18 experiments is in marked contrast with the experiment of Costan and Planas (1986) 19 where acidification with H_2SO_4 in a lotic system reduced *D. pristis* concentrations by 20 an order of magnitude. However it should be noted that the difficulties in testate 21 amoeba taxonomy, particularly in the genus Difflugia, are such that it is impossible to 22 be certain that these are the same taxa in both studies, particularly given the difference 23 in environment.

24 Several possible explanations can be proposed for the mode of impact of the 25 experimental treatment on testate amoebae. The simplest possibility for reduced 26 concentration of live amoebae and preferential loss of some taxa would be that they 27 are unable to cope with acid-stress, possibly through H⁺ interference with enzyme or 28 membrane function. Costan and Planas (1986) speculate that acid-shock may perturb 29 the osmotic regulation mechanism of testate amoebae leading to mortality. Over the 30 initial two-years of the experiment there was no overall trend of increased acidity. pH 31 values of samples from the treated plot here are lower than the control plots, but the 32 pH of the treated plot is not highly acidic by the standard of ombrotrophic peatlands 33 (even given the dilute measurement solutions). In the redundancy analysis 'treatment'

explained variance independent of pH differences so acidification alone cannot
 explain the changes observed.

3 It is notable that the taxa most reduced in abundance have idiosome tests while 4 the taxa most increased in abundance have secretion or xenosome tests. One possible 5 explanation for this result could be decomposition of idiosome tests in a more acidic 6 environment. Swindles and Roe (2007) and Payne (2007) have experimentally 7 demonstrated the dissolution of such tests in strong mineral acids, and these tests are 8 also disproportionately lost from the palaeoecological record (Mitchell et al. 2008). 9 However, in this study reduced abundance of E. rotunda, T. lineare and C. dubium 10 was also apparent when only considering live amoebae. Unless lower pH conditions 11 somehow reduce the bioavailability of Si for test construction this counts against a 12 taphonomic explanation for the changes.

13 Impacts on testate amoeba communities might be related to impacts on plant 14 communities. Over the 2002-4 study period Payne and Blackford (2005) noted near-15 total plant mortality in plot MAC11 with no new growth noted until a year after acid 16 treatment and differences still apparent when these samples were extracted seven 17 years later. Although the relationships between plant and testate amoeba communities 18 are under-researched the two are likely to be closely linked. In field surveys plant 19 community composition explains variance in testate amoeba communities even when 20 other major controls are accounted for (e.g. Payne and Mitchell 2007). Important 21 mechanisms of plant influence on testate amoeba communities may include litter 22 chemistry (Sutton and Wilkinson 2007); root exudates and the provision of physical 23 niches (for instance the smallest taxa might be able to enter Sphagnum hyalocysts). 24 Recent research by Vohník et al. (2009) has even suggested a possible impact of plant 25 communities on testate amoeba taphonomy with mycorrhizal fungi associated with 26 Rhododendron spp. using testate amoeba tests (particularly Centropyxidae and 27 Trigonopyxidae) as a nutrient source. How plant community change would manifest 28 itself on testate amoeba communities is uncertain. A related possibility is that 29 enhanced supply of dead plant material might boost the abundance of testate amoebae 30 which either directly feed on organic matter, or feed on lower micro-organisms that 31 do. That D. pristis type, T. arcula and H. subflava are all associated with drier 32 conditions and peat hummocks might suggest they could be associated with aerobic 33 decomposition. T. arcula has been observed to directly feed on organic matter while

- 1 *Hyalosphenia subflava* is associated with drained peatlands where aerobic
- 2 decomposition is active, which might support this idea (Tolonen 1986).

3 That the same taxa are deleteriously affected by H_2SO_4 deposition in this study 4 as by Na₂SO₄ deposition in the study of Payne et al. (2009) suggests that the cause of this change is most likely the input of SO_4^{2-} rather than Na⁺ or H⁺ (either directly or 5 indirectly). Recent studies have shown a reduction in methane efflux in sulphate-6 7 exposed peatlands (Dise and Verry 2001; Gauci et al. 2002). The mechanism for this 8 change is believed to be sulphate reducing bacteria (SRB) out-competing 9 methanogenic archaea (MA) for electron donors as using sulphate as an electron 10 acceptor is a more energetically favourable pathway. A limited pulse of sulphate may produce a prolonged impact on methane production due to recycling of sulphur in the 11 12 upper peat (Wieder et al. 1990; Gauci et al. 2005). In sulphate-treated plots on the 13 Moidach More site studied by Payne et al. (2009) methane efflux suppression 14 simultaneous with sulphate reduction has been demonstrated (Gauci et al. 2002; Gauci 15 and Chapman 2006). While these processes were not directly investigated in the 16 previous study of these experimental plots the distinctive odour of H_2S was noted 17 during core extraction from plots subject to the heaviest H₂SO₄-treatment but not in any of the control plots during 2002-4 (Payne and Blackford 2005). It therefore 18 appears that in this site too sulphate reduction has been stimulated. That the testate 19 20 amoeba taxa most deleteriously affected in both studies are bacterivores indicates that 21 the reduced abundance of these taxa may be due to a change in their food source. The 22 changes in testate amoeba community in both studies may well be linked to the 23 putative MA-SRB shift. The link between these prokaryotes and testate amoebae -if 24 any exists- is unlikely to be direct predation as in theory anaerobic bacteria and 25 archaea should not co-exist with aerobic protists (although the potential influence of 26 hydrological variability and testate amoeba motility are uncertain). One possible 27 mechanism linking the two groups could be testate amoeba predation of 28 methanotrophs, recently demonstrated in naked amoebae and flagellates (Murase and 29 Frenzel 2008).

The possible mode of impact of the experimental treatment on testate amoeba communities cannot be conclusively determined on the basis of this evidence alone. Several explanations are possible, however, the similarity in response to the study of Payne et al. (2009) does suggest a common forcing, and this common forcing could well relate to the putative MA-SRB shift.

1	That peatland testate amoebae respond to sulphate deposition appears
2	increasingly clear. This suggests that testate amoebae might have a role as
3	bioindicators, potentially allowing monitoring of both the effects of sulphate pollution
4	on peatland microbial communities and subsequent recovery. The preservation of tests
5	in peats may allow such processes to be studied over longer time-frames. However,
6	this is likely to be complicated by selective test decomposition and the dominant
7	control of hydrology. It would be of particular interest if a known testate amoeba
8	response could be firmly tied to a MA-SRB shift as the preservation of tests in peats
9	might then allow this response to be detected in palaeoecological sequences.
10	Detecting any sulphate-signal in the palaeoecological record is likely to be difficult in
11	practise and may not be possible other than where outside evidence (for instance the
12	presence of a tephra layer or historical information on the occurrence of sulphate
13	pollution) suggest the possibility. The increasing number of environmental variables
14	suggested to be controls on testate amoebae communities urge against a simplistic
15	view of palaeoecological data solely in terms of hydrological change. Non-
16	hydrological controls are likely to be particularly important in peatlands exposed to
17	air pollution over recent centuries.
18	
19	
20	ACKNOWLEDGMENTS
21	
22	Thanks to Andrew McIntyre for permission to set up these experiments on the
23	Moss of Achnacree, and to the current landowner and factor for continuing permission
24	to access the site. The map was prepared by Ed Oliver (Queen Mary, University of
25	London). These experiments were established when the author was in receipt of a
26	Westfield Studentship from Queen Mary, University of London and research on the
27	site continued during the course of a University of Manchester Humanities Research
28	Fellowship. Thanks to two anonymous reviewers for constructive comments on a
29	previous version of the manuscript.
30	

- 1 REFERENCES
- 2
- 3 Aoki Y, Hoshino M, Matsubara T (2007) Silica and testate amoebae in a soil under
- 4 pine-oak forest. Geoderma 142:29–35.
- 5 Balik V (1991) The effect of the road traffic pollution on the communities of testate
- 6 amoebae (Rhizopoda, Testacea) in Warsaw (Poland). Acta Protozool 30:5–11.
- 7 Blackford J, Edwards K, Dugmore A, Cook G, Buckland P(1992) Icelandic volcanic
- 8 ash and mid-Holocene Scots pine (Pinus sylvestris) pollen decline in northern
- 9 Scotland. Holocene, 2:260-265.
- 10 Charman D, Hendon D, Woodland W (2000) The identification of testate amoebae
- 11 (Protozoa:Rhizopoda) in peats. Quaternary Research Association, Technical Guide
- 12 Series, Cambridge
- 13 Clarke KR (1993) Non-parametric multivariate analyses of changes in community
- 14 structure. Aust J Ecol 18:117–143.
- 15 Costan G, Planas D (1986) Effects of a short-term experimental acidification on a
- 16 microinvertebrate Community—Rhizopoda, Testacea. Can J Zool 64:1224–1230.
- 17 Dise NB, Verry ES (2001) Suppression of peatland methane emission by
- 18 cumulative sulfate deposition in simulated acid rain. Biogeochemistry 53: 143–160.
- 19 Dwyer RB, Mitchell FJG (1997) Investigation of the environmental impact of remote
- 20 volcanic activity on north Mayo, Ireland, during the mid-Holocene. Holocene 7:113-
- 21 118.
- 22 Ferguson P, Lee JA (1979) The effects of bisulphite and sulphate upon photosynthesis
- 23 in Sphagnum. New Phytol 82:703-712.
- 24 Ferguson P, Lee JA (1980) Some effects of bisulphite and sulphate on the growth of
- 25 Sphagnum species in the field. Environ Pollut A 21:59-71.
- 26 Ferguson P, Lee JA (1983) Past and present sulphur pollution in the southern
- 27 Pennines. Atmos Environ 17:1131-1137.
- 28 Gauci V, Dise N, Fowler D (2002) Controls on suppression of methane flux from a
- 29 peat bog subjected to simulated acid rain sulfate deposition. Global Biogeochem Cy
- 30 16:1004
- 31 Gauci V, Dise N, Blake S (2005) Long-term suppression of wetland methane flux
- 32 following a pulse of simulated acid rain. Geophys Res Let 32:L12804.

- 1 Gauci V, Chapman SJ (2006) Simultaneous inhibition of CH4 efflux and stimulation
- 2 of sulphate reduction in peat subject to simulated acid rain. Soil Biol Biochem
- 3 38:3506-3510.
- 4 Gilbert D, Amblard C, Bourdier G, Francez A (1998a) The microbial loop at the
- 5 surface of a peatland: structure, functioning and impact of nutrients inputs. Microb
- 6 Ecol 35:83-93.
- 7 Gilbert D, Amblard C, Bourdier G, Francez AJ (1998b) Short-term effect of nitrogen
- 8 enrichment on the microbial communities of a peatland. Hydrobiologia 373/374:111-
- 9 119.
- 10 Gilbert D, Amblard C, Bourdier G, Francez A-J, Mitchell EAD (2000) Le régime
- 11 alimentaire des Thécamoebiens (Protista, Sarcodina). L'Année Biologique 39:57-68.
- 12 Grattan J, Charman D (1994) Non-climatic factors and the environmental impact of
- 13 volcanic volatiles: implications of the Laki fissure eruption of AD 1783. Holocene 4:
- 14 101-106.
- 15 Grattan J, Gilbertson D (1994) Acid-loading from Icelandic tephra falling on acidified
- 16 ecosystems as a key to understanding archaeological and environmental stress in
- 17 northern and western Britain. J Archaeol Sci 21:851-859.
- 18 Grattan J, Pyatt F (1999) Volcanic eruptions, dust veils, dry fogs and the European
- 19 Palaeoenvironmental record: localised phenomena or hemispheric impacts? Global
- 20 Planet Change 21:173-179.
- 21 Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological Statistics Software
- 22 Package for Education and Data Analysis. Palaeontologia Electronica 4.
- 23 Hemond HF (1980) Biogeochemistry of Thoreau's bog, Concord, Massachusetts. Ecol
- 24 Monogr 50:507- 526.
- 25 Hendon D, Charman DJ (1997) The preparation of testate amoebae (Protozoa:
- 26 Rhizopoda) samples from peat. Holocene 7:199-205
- 27 Lamentowicz L, Lamentowicz M, Gabka M (2008) Testate amoebae ecology and a
- 28 local transfer function from a peatland in western Poland. Wetlands 28:164-175.
- 29 Langmann B, Graf HF (2003) Indonesian smoke aerosols from peat fires and the
- 30 contribution from volcanic sulfur emissions. Geophys Res Lett 30: 1547.
- 31 Lee JA (1998) Unintentional experiments with terrestrial ecosystems: Ecological
- 32 effects of sulphur and nitrogen pollutants. J Ecol 86:1-12
- 33 Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for
- 34 ordination of species data. Oecologia 129: 271-280.

- 1 Mitchell EAD (2004) Response of testate amoebae (Protozoa) to N and P fertilization
- 2 in an Arctic wet sedge tundra. Arct Antarct Alp Res 36:77-82.
- 3 Mitchell EAD, Gilbert D, Buttler A, Grosvernier P, Amblard C, Gobat J-M (2003)
- 4 Structure of microbial communities in *Sphagnum* peatlands and effect of atmospheric
- 5 carbon dioxide enrichment. Microb Ecol 16:187-199.
- 6 Mitchell EAD, Payne RJ, Lamentowicz M (2008) Potential implications of
- 7 differential preservation of testate amoebae shells for paleoenvironmental
- 8 reconstruction in peatlands. J Paleolimnol 40:603-618.
- 9 Mitchell EAD, Borcard D, Buttler A, Grosvernier P, Gilbert D, Gobat J-M (2000a)
- 10 Horizontal distribution patterns of testate amoebae (Protozoa) in a Sphagnum
- 11 *magellanicum* carpet. Microb Ecol 39:290-300.
- 12 Mitchell EAD, Buttler A, Grosvernier P, Rydin H, Albinsson C, Greenup AL,
- 13 Heijmans MMPD, Hoosbeek MR, Saarinen T (2000b) Relationships among testate
- 14 amoebae (Protozoa), vegetation and water chemistry in five *Sphagnum*-dominated
- 15 peatlands in Europe. New Phytol 145:95-106.
- 16 Murase J, Frenzel P (2008) Selective grazing of methanotrophs by protozoa in a rice
- 17 field soil. FEMS Microbiol Ecol 65:408–414.
- 18 Nedwell DB, Watson A (1995) CH₄ production, oxidation and emission in a UK
- 19 ombrotrophic peat bog: influence of SO_4^{2-} from acid rain. Soil Biol Biochem 27:893-20 903.
- 21 Nguyen-Viet H, Gilbert D, Bernard N, Mitchell EAD, Badot P-M (2004) Relationship
- 22 between atmospheric pollution characterized by NO₂ concentrations and testate
- amoebae density and diversity. Acta Protozool 43:233–239.
- 24 Nguyen-Viet H, Bernard N, Mitchell EAD, Cortet J, Badot P-M, Gilbert D (2007)
- 25 Relationship between testate amoeba (Protist) communities and atmospheric heavy
- 26 metals accumulated in Barbula indica (Bryophyta) in Vietnam. Microb Ecol 53:53-
- 27 65.
- 28 Nguyen-Viet H, Bernard N, Mitchell EAD, Badot PM, Gilbert D (2008) Effect of lead
- 29 pollution on testate amoebae communities living in *Sphagnum fallax*: An
- 30 experimental study. Ecotoxicol Environ Saf 69:130–138.
- 31 Opravilova V, Hajek M (2006) The Variation of Testacean Assemblages (Rhizopoda)
- 32 Along the Complete Base-Richness Gradient in Fens: A Case Study from the Western
- 33 Carpathians. Acta Protozool 35:191-204.

- 1 Patterson RT, Barker T, Burbidge SM (1996) Arcellaceans (thecamoebians) as
- 2 proxies of arsenic and mercury contamination in northeastern Ontario lakes. J
- 3 Foraminifer Res 26:172–183.
- 4 Payne RJ (2007) Experiments on testate amoebae preservation in peats. Acta
- 5 Protozool 46:325-332.
- 6 Payne RJ (2009) The standard preparation method for testate amoebae leads to
- 7 selective loss of the smallest taxa. Quaternary Newsletter.
- 8 Payne RJ, Blackford JJ (2005) Simulating the impacts of distal volcanic products
- 9 upon peatlands in northern Britain: an experimental study on the Moss of Achnacree,
- 10 Scotland. J Archaeol Sci 32:989-1001.
- 11 Payne RJ, Blackford JJ (2008) Volcanic impacts on peatlands: Palaeoecological
- 12 evidence from Alaska. Quaternary Sci Rev 27:2012-2030.
- 13 Payne RJ, Mitchell EAD (2007) Ecology of testate amoebae from mires in the Central
- 14 Rhodope Mountains, Greece and development of a transfer function for
- 15 paleohydrological reconstruction. Protist 158:159-171.
- 16 Payne RJ, Mitchell EAD (in press- 2009) How many is enough? Determining
- 17 adequate count totals for ecological and palaeoecological studies of testate amoebae. J
- 18 Paleolimnol.
- 19 Payne RJ, Kilfeather A, van der Meer J, Blackford JJ (2005) Experiments on the
- 20 taphonomy of tephra in peatlands. Suo 56:147-156.
- 21 Payne RJ, Charman DJ Gauci V (2009- in press) The impact of simulated sulfate
- 22 deposition on peatland testate amoebae. Microb Ecol.
- 23 Payne RJ, Ryan P, Nishri A, Gophen M (in press) Testate amoeba communities of the
- 24 drained Hula wetland (Israel): implications for ecosystem development and
- 25 conservation management. Wetlands Ecol Manage.
- 26 Pilcher JR, Hall VA, McCormac FG (1995) Dates of Holocene Icelandic volcanic
- 27 eruptions from tephra layers in Irish peats. Holocene 5:103-110.
- 28 Proctor M, Maltby E (1998) Relations between acid atmospheric deposition and the
- surface pH of some ombrotrophic bogs in Britain. J Ecol 86:329-340.
- 30 Rao CR (1995) A review of canonical coordinates and an alternative to
- 31 correspondence analysis using Hellinger distance. Qüestiió 19:23-63.
- 32 Reinhardt EG, Dalby AP, Kumar A, Patterson RT (1998) Arcellaceans as pollution
- 33 indicators in mine tailing contaminated lakes near Cobalt, Ontario, Canada.
- 34 Micropaleontology 44:131–148.

- 1 Rochefort L, Vitt DH, Bayley SE (1990) Growth, production and decomposition of
- 2 Sphagnum under natural and experimentally acidified conditions. Ecology 71:1986-
- 3 2000.
- 4 Sanger L, Billett M, Cresser M (1994) The effects of acidity on carbon fluxes from
- 5 ombrotrophic peat. Chem Ecol 8:249-264.
- 6 Skiba U, Cresser M, Derwent R, Futty D (1989) Peat acidification in Scotland. Nature
 7 337:68-69
- 8 Stockmarr J (1971) Tablets with Spores used in Absolute Pollen Analysis. Pollen et
- 9 Spores 13:615-621.
- 10 Sutton CA, Wilkinson DM (2007) The effects of Rhododendron on testate amoebae
- 11 communities in woodland soils in North West England. Acta Protozool 46:333–338.
- 12 Swindles GT, Roe HM (2007) Examining the dissolution characteristics of testate
- 13 amoebae (Protozoa: Rhizopoda) in low pH conditions: Implications
- 14 for peatland palaeoclimate studies. Palaeogeogr Palaeocl 252:486-496.
- 15 Swindles GT, Charman DJ, Roe HM, Sansum PA (2009) Environmental controls on
- 16 peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: Implications
- 17 for Holocene palaeoclimate studies. J Paleolimnol 42:123–140.
- 18 Tallis JH (1964) Studies on Southern Pennine Peats: III. The Behaviour of Sphagnum,
- 19 J Ecol 52:345-353.
- 20 Ter Braak C, Šmilauer P (1997-2004) CANOCO for Windows, Version 4.53,
- 21 Biometris-Plant Research, Wageningen
- 22 Tolonen K (1986) Rhizopod analysis. In: Berglund BE (ed) Handbook of Holocene
- 23 Palaeoecology and Palaeohydrology, John Wiley and Sons, New York
- 24 Vohník M, Burdíková Z, Albrechtová J, Vosátka M (2009) Testate amoebae
- 25 (Arcellinida and Euglyphida) vs. Ericoid Mycorrhizal and DSE Fungi: A possible
- 26 novel interaction in the mycorrhizosphere of ericaceous plants? Microb Ecol 57:203-
- 27 214.
- 28 Watson A, Nedwell D (1998) Methane production and emission from
- 29 peat: the influence of anions (sulphate, nitrate) from acid rain. Atmos Environ 32:
- 30 3239-3245.
- 31 Wieder RK, Yavitt JB, Lang GE (1990) Methane production and sulfate reduction in
- 32 two Appalachian peatlands. Biogeochemistry 10:81-104.
- 33
- 34

- 1 FIGURES
- 2
- 3 Figure 1. Location map of Moss of Achnacree site and relative position of treated
- 4 plots within the experimental area.

6 Figure 2. Environmental data for the three experimental plots, showing pH of peat

7 suspension in water and depth to water table at time of sampling. Box plots show

8 median (central line), first and third quartiles (grey box), tenth and ninetieth

9 percentiles ('whiskers') and all outliers (dots).

10

11 Figure 3. Principal components analysis of Hellinger-transformed testate amoebae

12 data (percentages of all tests, excluding taxa $n \le 4$) for samples from experimental

- 13 plots. Filled circles show MAC11 samples (acid treated); triangles show MAC2
- 14 samples (control) and squares show MAC30 samples (additional control). Species
- 15 codes:- AMUSC: Assulina muscorum, ASEM: Assulina seminulum, BIND:
- 16 Bullinularia indica, CAERO: Centropyxis aerophila type, CDUB: Corythion dubium,
- 17 DPRIS: Difflugia pristis type, EROT: Euglypha rotunda type, HPETR: Heleopera

- 1 *petricola*, HSUBF: *Hyalosphenia subflava*, NTINC: *Nebela tincta* type, PACRO:
- 2 Phryganella acropodia type, PFUL: Pseudodifflugia type, TARC: Trigonopyxis
- 3 arcula, TLIN: Trinema lineare.

5 Figure 4. Principal components analysis of Hellinger-transformed testate amoeba data

6 comparing samples from plot MAC11 in 2009 (filled circles) to samples from the

7 same plot extracted between 2002 and 2004 (unfilled circles). 'Age' is a nominal

8 variable for the 2009 samples. Species codes as for Fig.3 and Table 2 with the

9 exception of 'COR-TRI' which shows a *Corythion-Trinema* type (following Charman

10 et al. 2000 but probably only representing *C. dubium* here) and 'HPESY' which

11 shows a grouped *Heleopera petricola- Heleopera sylvatica* type.

- 1 Table 4. Results of cluster analysis (Paired Group Method using a Bray-Curtis
- 2 distance measure) on % total tests data showing groups identified at the third level of
- 3 division.
- 4
- 5

- 1 Table 1. Plant species of the three experimental plots at the time of sampling.

Plot	No.	Plant species present
	Samples	
MAC11	20	Calluna vulgaris, Eriophorum vaginatum, Aulacomnium palustre,
		Hypnum cupressiforme, Cladonia portentosa, Carex (undiff.).
MAC2	10	Calluna vulgaris, Eriophorum vaginatum, Aulacomnium palustre,
		Hypnum cupressiforme, Cladonia portentosa, Carex (undiff.),
		Sphagnum (undiff.), Odontoschisma sphagni.
MAC30	20	Calluna vulgaris, Eriophorum vaginatum, Aulacomnium palustre,
		Hypnum cupressiforme, Cladonia portentosa, Sphagnum (undiff.),
		Odontoschisma sphagni.

- Table 2. Relative abundance of major taxa¹ (over 1% total tests) in three plots: 1
- 2 MAC11 (sulphuric acid treated), MAC2 (control) and MAC30 (additional control),
- 3 see text for full details of experimental set-up. Also showing relative abundance of
- 4 living individuals by taxon (in parentheses) and taxon abbreviations used in Figs. 3
- 5 and 4. Data for living individuals is based on small counts and should be treated with
- 6 caution.
- 7

con Abbreviation Relative abundance in plot (relative abundance living individuals):		all tests ndance		
		MAC11 (%)	MAC2 (%)	MAC30 (%)
Assulina muscorum Greef 1888	AMUSC	19.2	18.8	26.5
		(10.1)	(3.9)	(10.8)
Assulina seminulum (Ehrenberg 1848)	ASEM	3.8	0.7	1.4
		(0.0)	(1.0)	(0.4)
Centropyxis aerophila Deflandre 1929 type	CAERO	4.6	3.4	4.4
		(1.3)	(2.5)	(1.3)
Corythion dubium Taranek 1881	CDUB	3.3	17.4	11.3
		(3.1)	(13.6)	(9.6)
Difflugia pristis Penard 1902 type	DPRIS	10.1	1.4	0.3
		(17.3)	(0.0)	(0.0)
Euglypha rotunda Wailes 1911 type	EROT	0.6	1.2	1.8
		(0.0)	(1.8)	(1.1)
<i>Euglypha strigosa</i> (Ehrenberg 1872)	ESTRI	4.5	9.6	5.9
		(3.2)	(10.0)	(8.3)
Heleopera petricola Leidy 1879	HPETR	8.8	4.0	4.8
		(7.3)	(7.5)	(3.2)
Heleopera rosea Penard 1890	HROS	0.4	3.4	0.9
		(0.5)	(2.8)	(1.6)
Hyalosphenia subflava Cash and Hopkinson 1909	HSUBF	4.9	0.7	0.3
		(6.6)	(1.1)	(0.0)
Nebela militaris Penard 1890	NMILI	3.2	3.5	1.6
		(4.7)	(5.2)	(0.9)
Nebela tincta (Leidy 1879) type	NTINC	18.0	16.8	26.5
	54050	(30.0)	(34.5)	(57.2)
Phryganella acropodia (Hertwig & Lesser 1874) type	PACRO	9.3	11.7	7.3
		(6.7)	(0.7)	(0.9)
Pseudodiffiugia fulva Penard 1901 type	PFUL	2.7	0.5	0.5
	T 1D0	(5.2)	(0.0)	(0.8)
i rigonopyxis arcula (Leidy 1879)	TARC	4.0	0.8	1.0
		(2.8)	(0.0)	(0.0)

¹Minor taxa are: Bullinularia indica, Centropyxis aculeata, Cryptodifflugia oviformis, Difflugia minutissima type, Euglypha

ciliata, Euglypha cristata, Hyalosphenia papilio, Nebela flabellum, Nebela tubulosa, Placocista spinosa, Sphenoderia fissirostris, Trinema complanatum, and Trinema lineare, plus Habrotrochoa angusticollis.

- Table 3. Redundancy analysis of testate amoeba data showing percentage variance
- explained and P-values of these relationships assessed by Monte Carlo permutation
- tests (999 permutations).

Dataset	Explanatory variable	Co-variable	% variance explained	P-value
All tests (%)	Treatment	-	17.9	0.001
	Treatment	pН	4.8	0.001
All tests (concentration)	Treatment	-	18.4	0.001
	Treatment	pН	6.7	0.001
Live amoebae (%)	Treatment	-	14	0.001
	Treatment	pН	5.2	0.001
Live amoebae (concentration)	Treatment	-	13.3	0.001
	Treatment	рH	53	0.001

- 3 Table 4. Results of cluster analysis (Paired Group Method using a Bray-Curtis

4 distance measure) on % total tests data showing groups identified at the third level of

- 5 division.

Group	Samples
1	MAC11 (1 sample)
2	MAC11 (1 sample)
3	MAC11 (13 samples), MAC2 (1 sample)
4	MAC30 (20 samples), MAC2 (9 samples), MAC11 (5 samples)