12 research outputs found

    The effect of 24-epibrassinolide and clotrimazole on the adaptation of Cajanus cajan (L.) Millsp to salinity

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The objective of this study was to evaluate the effects of one of brassinosteroids (24-epibrassinolide) and clotrimazole, (an inhibitor of brassinosteroid synthesis) on plant growth parameters, parameters related to leaf gas exchange (photosynthetic and transpiration rates; stomatal conductance; water use efficiency), photosynthetic pigment content and osmolyte (sugars and proline) content in Cajanus cajan exposed to salinity. Salt stress-caused by NaCl treatment-affected values of all parameters analyzed. The effects were ameliorated by 24-epibrassinolide and intensified by clotrimazole. The hormone increased fresh mass of the plant, shoot dry mass, leaf area, water content of leaves and roots, photosynthetic pigments, sugar concentration, photosynthetic rate, and water use efficiency. The effects of hormone were less evident in the absence of salt. However, under this condition the application of clotrimazole affected the values of parameters studied, indicating the importance of brassinosteroid synthesis for the normal development of the plant.33518871896Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [08/50165-8

    24-epibrassinolide restores nitrogen metabolism of pigeon pea under saline stress

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Several studies have shown that brassinosteroids attenuate the effects of salt stress. However, nothing is known about their effects on amino acid transport, nor the effects of these hormones on nitrate uptake under saline conditions. This study set out to determine the effects of 24-epibrassinolide, at concentrations of 10-7 M and 0.5 x 10-9 M, and clotrimazole (inhibitor of brassinosteroid synthesis), at 10-4 M, on nitrate uptake and metabolism in plants of C. cajan (L.) Millsp, cultivar C11, growing under salinity. The following aspects were analyzed: levels of proteins, amino acids, nitrate, nitrate reductase of roots and the composition of xylem sap amino acids. Salinity reduced the proportion of N-transport amino acids ASN (the major component), GLU, ASP and GLN. The effect of the hormone in reducing the adverse effects of salt was related to the reestablishment (totally or partially) of the proportions of GLU, ASN and GLN, transported in the xylem and to the small but significant increase in uptake of nitrate. Increased nitrate uptake, induced by 24- epibrassinolide, was associated with a higher activity of nitrate reductase together with greater levels of free amino acids and soluble proteins in roots of plants cultivated under saline conditions. The decline in several components of nitrogen metabolism, induced by salt, was attenuated by 24-epibrassinolide application and accentuated by clotrimazole, indicating the importance of brassinosteroid synthesis for plants growing under salinity.54Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    Status and prospects of systems biology in grapevine research

    Get PDF
    The cultivated grapevine, Vitis vinifera L., has gathered a vast amount of omics data throughout the last two decades, driving the imperative use of computational resources for its analysis and integration. Molecular systems biology arises from this need allowing to model and predict the emergence of phenotypes or responses in biological systems. Beyond single omics networks, integrative approaches associate the molecular components of an organism and combine them into higher order networks to model dynamic behaviors. Application of network-based methods in multi-omics data is providing additional resources to address important questions regarding grapevine fruit quality and composition. Here, we review the recent history of systems biology in this species. We highlight the most relevant aspects of the discipline and describe important integrative studies that have helped in the global understanding of how this species responds to the environment and how it triggers the fruit ripening developmental program. We also highlight the latest resources that are available for the grapevine community to exploit and take advantage of all the omics data that is being generated.This work was supported by Grant PGC2018-099449-A-I00 and by the Ramón y Cajal program grant RYC-2017-23645, both awarded to J.T.M. from the Ministerio de Ciencia, Innovación y Universidades (MCIU, Spain), Agencia Estatal de Investigación (AEI, Spain), and Fondo Europeo de Desarrollo Regional (FEDER, European Union).Peer reviewe
    corecore