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Abstract 
The cultivated grapevine, Vitis vinifera L., has gathered a vast amount of omics data throughout 
the last two decades, driving the imperative use of computational resources for its analysis and 
integration. Molecular systems biology arises from this need allowing to model and predict the 
emergence of phenotypes or responses in biological systems. Beyond single omics networks, 
integrative approaches associate the molecular components of an organism and combine them 
into higher order networks to model dynamic behaviors. Application of network-based methods 
in multi-omics data is providing additional resources to address important questions regarding 
grapevine fruit quality and composition. Here we review the recent history of systems biology in 
this species. We highlight the most relevant aspects of the discipline and describe important 
integrative studies that have helped in the global understanding of how this species responds to 
the environment and how it triggers the fruit ripening developmental program. We also highlight 
the latest resources that are available for the grapevine community to exploit and take advantage 
of all the omics data that its being generated.  
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8.1  Introduction  

Genes and their products perform complex cellular tasks that are essential for all living 

organisms. At the molecular level, they are organized as modules forming part of large 

networks. Within these high-order associations, genes/proteins that are functionally 

related interact, regulate each other, or form part of a metabolic pathway. The functional 

characterization of these molecules through forward and reverse genetic analyses has 

allowed the dissection of their networks and their involvement in diverse cellular 

processes. In the last decade, however, a massively promoted approach to asset the whole 

comprehension of a network from a global perspective has been the integration of several 

types of omics data.    

The rise of next generation sequencing (NGS) technologies has led to an 

expansion in the amount of genomic/transcriptomic data required to be stored and 

processed. In addition, technologies covering proteomics and other types of omics are 

rapidly increasing the amount of data being produced. Scientists are now racing to 

develop efficient data analysis algorithms, user-friendly tools and software applications, 

and establishing extensive hardware infrastructure for answering different questions of 

modern life science. It is hypothesized that the larger the amount of omics data being 

generated for a species the easier for its integration, engendering more robust and reliable 

analyses.    

 The grapevine (Vitis vinifera L.) has become an appealing species to define as a 

‘model’ system for studying non-climacteric fleshy fruits. The increasing amount of 

genomics data being continuously generated within the grapevine community, after the 

grape genome was sequenced and released in 2007, has certainly helped in this 

nomination. The grape genome, currently on its second assembly (12X.v2) and its third 

annotation (VCost.v3) comprises to date 33,568 genes (Canaguier et al. 2017). With the 



purpose of providing biological meaning to this remarkable amount of data, several 

initiatives have been introduced for describing genes within their biological context 

(Grimplet et al. 2009a), including not only in vivo functional characterizations but also in 

silico analyses such as co-expression networks and other integrative approaches 

(reviewed by Wong and Matus 2017).  

With the commitment of consenting the efficient exploitation of Vitis biological 

resources and understanding the genetic and molecular basis of all processes in this 

species, the International Grapevine Genome Program (IGGP; www.vitaceae.org) is 

currently developing the GrapeIS system. This is an integrated set of interfaces supporting 

advanced data modeling, rich semantic integration and the next generation of data mining 

tools linking genotypes to phenotypes (Adam-Blondon et al. 2016). Within the same 

framework, the recently launched INTEGRAPE consortium (COST Action-mediated) 

aims to integrate data at different levels to maximize the power of omics and establish a 

manageable and open data platform. The initiatives mentioned here share the use of FAIR 

principles that ensure data are Findable, Accessible, Interoperable and Reusable 

(Wilkinson et al. 2016). The establishment of solid integrative data platforms are 

compulsory to make available interoperable grapevine datasets and tools. The application 

of systems biology methods has arisen to fulfil this purpose. Here we provide a brief 

review of the fundamentals of systems biology and the history of applying integrative 

omics methods in grapevine research. The best-known programming scripts/packages 

and web-based resources for the analysis and interpretation of omics-generated data will 

also be described. Before examining the state of the art, a list of terms commonly used in 

the field of Systems Biology is presented in Box 8.1. 

 

 



Box 8.1  Glossary of Terms 

ATAC-seq:  The technology that applies high-throughput sequencing to assay for 

transposase-accessible regions in the genome effectively analyzing chromatin 

accessibility.  

Big Data/Data Science: An emerging discipline that combines computer science and 

statistics to analyze massive amounts of data with the goal of answering specific and 

practical questions of a phenomenon under study.  

ChIP-seq: The technology that couples chromatin immunoprecipitation (ChIP) with 

high-throughput sequencing to analyze protein-DNA interactions. 

Cistromics: The omics technology that analyses the cistrome or the complete set of 

binding sites of a given transcription factor to the DNA under specific conditions.  

Community network: Network built from as few as three input networks, diminishing 

the limitations of each individual method. Edges supported by a higher number of 

methods are more reliable.   

DAP-seq: The technology that couples in vitro expression of affinity-purified 

transcription factors with high-throughput sequencing of a genomic DNA library in order 

to analyze protein-DNA interactions. 

Epicistromics: The omics technology that studies the epicistrome or the complete set of 

genomic locations occupied by nucleosomes carrying histones with distinct 

posttranslational modifications under specific conditions.  

Gene co-expression network (GCN): A undirected network typically built from 

transcriptomic data such as RNA-seq or microarray data where nodes represent genes and 

edges are drawn between two nodes when the corresponding genes are significantly co-

expressed under the analyzed conditions.  



High performance computing: The use of supercomputers and parallel computational 

architectures to massively process information in order to solve complex problems. 

High-throughput sequencing (HTS): Techniques that sequence massive amounts of 

DNA in an automatic and parallel manner. High-throughput in omics is referenced to the 

use of automation equipment to address biological questions that are otherwise 

unattainable using conventional methods.  

MNase-seq: The technique that applies high-throughput sequencing to the DNA 

protected by nucleosomes during micrococcal nuclease digestion to effectively identify 

nucleosome positioning. 

Molecular systems biology: An emerging discipline at the intersection between 

molecular biology, mathematics/statistics and computer science that integrates massive 

amounts of omics data with the final goal of generating predictive models of biological 

systems focusing on biomolecular interactions rather than on isolated molecular 

components.  

Network: A model of a system where nodes represent the system components and edges 

between nodes indicate an interaction between the corresponding components. Networks 

can be directed or undirected depending on whether or not there exists a directionality in 

the interactions between the system components. Networks can be weighted when 

numerical values are associated with edges in order to capture specific features of the 

corresponding interactions.  

Next Generation Sequencing (NGS): A term to describe a collection of genetic 

sequencing techniques that improve upon the original Sanger sequencing process. This 

technique utilizes DNA sequencing technologies that are capable of processing multiple 

sequences in parallel. Also known as massively parallel sequencing, deep sequencing or 

high-throughput sequencing (HTS). 



Omics technologies: Techniques that detect and quantify massive amounts of molecules 

of a specific type from a sample. 

Regulon: Group of non-contiguous genes that are regulated as a unit, generally controlled 

by the same regulatory gene that expresses a protein acting as a repressor or activator.  

RNA-seq: The application of high-throughput sequencing to the cDNA corresponding to 

the entire set of transcripts in a sample. This technology allows researchers to detect and 

estimate the abundance of transcripts (coding and non-coding) in a sample, also including 

alternative splicing variants. 

Transcriptional network: A directed network typically built from cistromic data 

corresponding to multiple transcription factors where nodes represent genes and an edge 

is drawn from gene_i to gene_j when gene_i codifies for a transcription factor that directly 

binds to the promoter of gene_j. Weights can be associated with edges to represent if the 

binding of the transcription factor has an activating, repressing or neutral effect over the 

transcription of a target gene.  

Transcriptomics: The omics technology that focuses on the analysis of the transcriptome 

or the complete set of transcripts expressed from the genome under specific conditions. 

 

8.2  From elements to relations: Overview of plant systems biology  

Systems biology is a computational, mathematical and biology-based interdisciplinary 

field that focuses on complex interactions within biological systems. Its foundation 

outcomes from amending the general (Von Bertalanffy 1968) and living (Miller 1978) 

system theories and aims to elucidate biological phenomena applying a systemic view of 

interactions between molecular entities instead of describing their individual composition 

or function (Mesarovic 1968). By addressing the cell as a network of genes, their products 

and their interactions, the latter defined as network motifs or patterns, it’s feasible to study 



the structural design principles of living organisms. Distant networks that perform similar 

tasks (e.g. information processing) all share similar types of recurring patterns of 

interconnections, thus motifs define universal classes of networks (Milo et al. 2002). 

From this and other studies, it was suggested that structures of different networks were 

governed by the same principles. This new paradigm is embodied within the Oltvai and 

Barabási life’s complexity pyramid, now re-updated and revisited by systems biology 

advancements (Figure 8.1). Here, cell components arrange themselves in persistent 

patterns and these in turn form modules with discrete cellular functions. Finally, these 

modules are hierarchically organized, defining the cell’s large-scale functional 

organization.  

 Historically, reductionist studies in plants have been aimed for identifying the 

individual components associated with the occurrence of certain phenotypes. Although 

this approach has been massively adopted in the last 50 years, successfully producing 

extensive repertoires of plant molecular components, it begun to lose its effectiveness at 

the beginning of the current century when it became apparent that majority of phenotypes 

were produced by complex orchestrations involving myriads of molecular components, 

many of which were redundant among them. This scenario became more apparent with 

the development of the so-called omics technologies that provide an accurate molecular 

snapshot of the biological processes under study by detecting and quantifying the 

repertoire of molecules that are present (Yuan et al. 2008). Hence, research in molecular 

biology is gradually shifting towards a holistic perspective, integrating the individual 

‘omics’ datasets, to gain biologically meaningful aspects of plant systems (Sheth and 

Thaker 2014). 

The recent development of high-throughput DNA sequencing, genomics and 

transcriptomics have pushed these methodologies to become so far, the best-established 



mature and reliable techniques to characterize molecular systems (Bolger et al. 2018). 

Specifically, RNA-seq, the high-throughput sequencing of the cDNA corresponding to 

the entire set of transcripts in a sample, is applied to identify and estimate transcript 

abundance including different isoforms produced by alternative splicing as well as to 

analyze differential gene expression between specific conditions (Martin et al. 2013). The 

main molecular mechanisms controlling gene expression, namely the interactions 

between transcription factors and DNA (recently named ‘the cistrome’), and the different 

posttranslational modifications of histones associated with the DNA (epicistrome) are 

routinely characterized using techniques such as ChIP-seq; the combination of chromatin 

immunoprecipitation with the high-throughput sequencing of the purified DNA (Chen et 

al. 2017). DAP-seq is a technique based on high-throughput sequencing that studies the 

cistrome based on the in vitro expression of affinity-purified transcription factors (Bartlett 

et al. 2017). Finally, MNase-seq, DNase-seq and ATAC-seq are techniques used to study 

nucleosome positioning and chromatin accessibility that have been shown to highly 

influence gene expression (Pajoro et al. 2014; Sullivan et al. 2015; Pass et al. 2017; Bajic 

et al. 2018).  

Despite the clear methodological and analytical advantages of performing 

genomics studies compared to other omics, it has been demonstrated that the sole use of 

genomics and transcriptomics is not sufficient to predict phenotypes from the molecular 

state of biological processes (Papatheodorou et al. 2015). In this respect, proteomics (the 

analysis of the proteome or the entire set of proteins), and metabolomics (the study of the 

metabolome or the complete set of metabolites), are currently under development aiming 

at providing a more exhaustive molecular description of biological systems (Ramalingam 

et al. 2015).  



At this point, the massive amounts of data generated by omics technologies is 

being stored in public databases considerably exceeding the analytical capacities of 

humans, making imperative the use of computational resources to extract relevant 

information. Currently, this scenario is not exclusive to molecular biology as it pervades 

science in a more general context by inducing the emergence of the so call Big Data or 

Data Science. This is a discipline that combines high-performance computing, such as 

the use of computational clusters, with sophisticated statistical methods, in order to 

answer specific questions of phenomena under analysis (Carmichael et al. 2018). In 

molecular biology, this has promoted the development of “Molecular Systems Biology”. 

This emerging discipline lays at the intersection between molecular biology, computer 

science and mathematics/statistics (Figure 8.2). The main methodology in molecular 

systems biology pertains to the generation of omics data and their integration with already 

existing data freely available in public databases. This massive amount of data is 

integrated and analyzed typically using multivariate statistical methods implemented with 

high-performance computing. Specifically, molecular systems biology pursuits the 

development of computational/mathematical models of the interactions among the 

molecular components of the systems responsible for an observed phenotype rather than 

focusing on the functioning of the isolated individual components. Here, the ultimate goal 

relates to the generation of tools that allow to model and predict the emergence of specific 

phenotypes or responses in biological systems (Sheth and Thaker 2014). Commonly, 

systems of differential equations are used as the modeling structure to achieve this goal. 

Nonetheless, network science is emerging as a central paradigm in molecular systems 

biology as an effective modeling framework (Li et al. 2015).  

In the context of network science, a network is a graph whose nodes represent the 

molecular entities of the system and a directed or undirected edge is drawn between two 



nodes to specify the interaction between the corresponding molecular components. A 

numerical value termed weight can be incorporated in the edges to capture the strength 

of the represented interaction. Topological studies of a network, such as the analysis of 

free-scale properties, can identify relevant nodes called hubs that are highly connected in 

the network and play key roles in network robustness and dynamics. Other topological 

parameters such as ‘node transitivity’, ‘betweenness’ and ‘eccentricity’ are especially 

suitable to identify relevant molecular components of the biological system under 

analysis. Clustering techniques and community analysis are used to unravel the 

underlying structure of networks and are applicable in molecular systems biology to 

identify molecular modules that function with a certain level of separation from the rest 

of the system (Aoki et al. 2007). Finally, network motif analysis or the identification of 

non-random subgraphs can shed light on the building blocks that occur recurrently in 

biological systems (Defoort et al. 2018). 

Two types of gene networks are intensively used in molecular systems biology; 

gene co-expression networks and transcriptional networks. Gene co-expression networks 

are normally constructed based on a compendium of microarray and only recently, RNA-

seq data sets. These are undirected networks where nodes represent genes and undirected 

edges are drawn between nodes to represent co-expression relationships between the 

corresponding genes. Transcriptional networks are constructed from ChIP-seq data 

corresponding to sets of different transcription factors binding to the genome. These are 

directed networks where nodes represent genes and a directed edge is drawn from gene_i 

to gene_j, where gene_i codifies for a transcription factor that binds to the promoter of 

gene_j. Transcriptional networks can be further refined by adding RNA-seq data 

corresponding to mutants or overexpressors of the transcription factors previously 

analyzed using ChIP-seq. According to this, weights can be associated with edges to 



represent an activating, repressing or neutral effect of the binding of the transcription 

factor to the promoter of the target gene. 

 

8.3  A decade conducting grapevine omics. What´s yet to come 

Genomics resources for Vitis species have increased promptly within the last fifteen years, 

beginning with the sequencing of expressed sequence tags (ESTs) (Da Silva et al. 2005; 

Moser et al. 2005). These resources have permitted to quantitatively assess the grape 

transcriptome by aiding the development of cDNA and oligonucleotide microarrays 

(Terrier et al. 2005; Waters et al. 2005). Quantitative data acquisition through microarray 

analysis permitted large-scale mRNA profiling studies of gene expression to unravel the 

most important events of berry development and ripening. However, it was not but after 

the concomitant release of the V. vinifera cv. ‘Pinot Noir’ genome sequence (Jaillon et al. 

2007; Velasco et al. 2007) that a burst of new transcriptomic technologies emerged for 

this species. In the Affymetrix Grape GeneChip Genome Array, approximately one-third 

of the expected genes are represented. This platform was largely used for tissue-specific 

mRNA expression profiling in grape berry tissues (Grimplet et al. 2007; Deluc et al. 2007) 

and responses to abiotic stresses (Tattersall et al. 2007; Cramer et al. 2007) and 

compatible viral diseases (Vega et al. 2011), where all the produced data were collected 

and unified in the PLEX database (PLEXdb, http://www.plexdb.org; Wise et al. 2007). 

The microarray Nimblegen platform was developed soon after (Fasoli et al. 2012; 

http://ddlab.sci.univr.it/FunctionalGenomics/), with an array representing more than 98% 

of the genes predicted in the 12xV1 grapevine genome annotation (090918 Vitus vinifera 

exp HX12 chip, with approximately 29,549 denoted genes). To date, this platform has 

generated the largest amount of transcriptomic data for this species (1605 experiments 



until July 2018). All developed arrays in Vitis can be found in ArrayExpress EMBL-EBI; 

https://www.ebi.ac.uk/arrayexpress/).  

Although in situ oligonucleotide arrays are still widely used for gene expression 

profiling in grapevine, a rapid development of new nucleic acid technologies have been 

largely adopted for genomic, transcriptomic and metagenomic studies in grapevine in the 

last years (Figure 8.3A). A variety of NGS technologies, including the 454 (Roche) 

(Margulies et al., 2005), the Genome Analyzer/Hiseq (Illumina Solexa) (Bennett et al. 

2005) and the SOLiD (Life Technologies), as well as newer platforms such as Helioscope 

(Helicos) (Milos 2008), PacBio RS and Sequel (Pacific Bioscience) (Eid et al. 2009), 

Oxford Nanopore Technologies for single molecular sequencing and Ion Torrent (Life 

Technologies), based on a semiconductor chip (Rothberg et al. 2011), are available. 

Thanks to high-throughput and cost-efficient capabilities of these technologies, an 

unprecedented amount of data has been generated and a huge amount of genomic and 

transcriptomic data has accumulated exponentially in Vitis species (Figure 8.3B-3C).  

The combination of high throughput sequencing technologies and the grapevine 

reference genome (Jaillon et al. 2007) has facilitated comprehensive sequence analysis in 

diverse grapevine germplasms (Table 1). Cultivars with different agronomic and 

oenological characteristics have been re-sequenced to identify genetic differences 

underlying the distinct phenotypes (Da Silva et al. 2014; Di Genova et al. 2014; Cardone 

et al. 2016; Chin et al. 2016, Minio et al. 2017; Minio et al. 2019; see Chapter 05) and 

comprehensive inventories of sequence variations were generated (Mercenaro et al. 2017; 

Zhou et al. 2017; Liang et al. 2019). On the other hand, transcriptome sequencing using 

NGS technologies has been widely used to detect gene expression in grapevines (see 

Chapter 08), including fruit (e.g., Zenoni et al. 2010), leaves (e.g., Liu et al. 2012), flowers 

(e.g., Domingos et al. 2016), in response to different biotic and abiotic stresses (e.g., 



Cheng et al. 2015; Blanco et al. 2015; Amrine et al. 2015; Tillett et al. 2011) or to describe 

the expression of specific transcription factors (e.g., Sweetman et al. 2012). Other grape 

researchers have used high-throughput expression to examine the phenotypic plasticity 

of cv. ‘Corvina’ berries at various developmental stages (Dal Santo.et al. 2013). Despite 

its primary objective is to characterize expression profile, RNAseq technologies have 

been also used to identify differential splicing activity and single nucleotide 

polymorphisms (Zenoni et al. 2010; Vitulo et al. 2014) as well as identifying and profiling 

long non-coding RNAs (Vitulo et al. 2014; Harris et al. 2017).   

Since grapevine naturally hosts a reservoir of microorganisms that interact with 

the plant and affect both the qualitative and quantitative scale of wine production (Martins 

et al., 2013; Zarraonaindia et al., 2015), grape metagenomics studies also are assuming 

an increasing resonance in the grape scientific community. Recently, high-throughput 

technologies have been used to characterize bacterial communities of different grapevine 

plant portions, such as leaves and berries (Leveau and Tech 2010), to assess the microbial 

communities of soils (Zarraonaindia et al. 2015; Burns et al. 2015; Burns et al. 2016) and 

to survey the associations involving grapevine microbiota, fermentation and wine 

chemical composition (Bokulich et al. 2014; Bokulich et al. 2016). 

Despite the study of epigenetic marks (e.g. histone post-translational 

modifications and DNA methylation) are known to influence gene expression and largely 

affect the phenotype of plants, there are still scarce epigenomic data and related resources 

available for grapevine. Nonetheless, Fortes and Gallusci (2017) recently proposed this 

species as an essential perennial woody plant model for such studies due to the impact of 

epigenetic modifications on agricultural traits, and also because epigenetic marks may 

serve as an interface between the environment and the genome (reviewed by Fabres et al. 

2017). Very recently, Xie et al. (2017) used methylation sensitive amplified 



polymorphisms (MSAPs) to find global patterns of DNA methylation and explored the 

genetic and epigenetic diversity of a single cultivar across 22 vineyards located in six 

different wine sub-regions.  

Proteomics resources have also arisen in the last decade, despite at a much lower 

rate. While at the beginning most of these studies used two-dimensional gel analysis and 

focused on berry metabolism coupled to abiotic stress responses (Vincent et al. 2007; 

Jellouli et al. 2008; Grimplet et al. 2009b), high-resolution techniques have also been 

applied to grape such as iTRAQ (Lucker et al. 2009), or much more recently, 2DE gels 

coupled to liquid chromatography with electrospray ionization (LC-ESI-MS/MS; Negri 

et al. 2015), or nanoLC ESI LTQ-Orbitrap tandem mass spectrometry (Wang et al. 2017; 

Kambiranda et al. 2018).  

Targeted and untargeted metabolome studies have unquestionably increased 

within grapevine research, benefiting from a variety of tools such as massive high-

performance liquid chromatography (HPLC) and gas chromatography (GC) being applied 

for sample separation while tandem mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) being developed for the identification and quantification of metabolites. 

Solid phase and micro solid phase extractions (SPE and SPME), followed by GC-MS 

methods have been used for volatile composition studies (Savoi et al. 2016; Duchêne et 

al. 2017). Ultra-High-Performance Liquid Chromatography (UHPLC) coupled to triple 

quadrupole (QqQ) TQD mass spectrometry analysis was recently used for determining 

polyphenomic composition (phenylpropanoid-specific omics) and its cultivar-dependent 

changes in response to drought (Pinasseau et al. 2017). Also, Vondras et al. (2017) 

recently performed untargeted HPLC-MS to quantify amino acids, sugars, organic acids, 

and phenylpropanoids to compare the different ripening progressions of berries in a single 

cluster, while Blanco et al. (2015) and Negri et al. (2017) studied the effect of Botrytis 



cinerea noble rot infection in the metabolome of ripening berries and postharvest 

withered berries, respectively, by using reversed-phase HPLC coupled to ESI mass 

spectrometer.  

Despite metabolomics analyses are rapidly increasing in Vitis, metabolism must 

be understood as a dynamic process. Fluxomics recognizes this complexity in metabolic 

systems and seeks to determine the rates of metabolic reactions (Winter and Krömer 

2013). With the purpose of describing how metabolic fluxes determine cellular 

phenotypes, Soubeyrand et al. (2018) performed targeted metabolomics and enzyme 

activity measurements in grape cell cultures at different time-points of nitrogen limitation 

in order to construct a constraint-based model (by comparing maps of metabolic fluxes 

in the two contrasted situations) to identify the metabolic drivers of anthocyanin 

accumulation under high carbon-to-nitrogen ratios. 

Within the cell’s functions, the transport of essential and beneficial nutrients 

allows all basic processes to be performed efficiently. In grapevines, ion content profiles 

can reflect the mineral composition of soils and therefore they can describe certain 

components of a terroir. Pii et al. (2017) studied the ionomics profile of berries grown in 

different areas to try to discriminate their geographical origin. By applying multi 

elemental inductively-coupled plasma-mass spectrometry (ICP-MS), the authors found 

that rare earth elements were the best chemical descriptors. 

Recent attempts for identifying transcription factor binding landscapes have been 

initiated and deposited in public repositories, despite no publications have yet been 

produced. Additional efforts are still needed to map protein-DNA and protein-protein 

interactions at a large scale. Also, DNAse I hypersensitivity mapping could be useful to 

identify pioneering transcription factors controlling grape and wine quality traits.  

 



8.4  From single omics to integrative data analysis 

Within single omics studies the interactions between molecules can be represented in 

networks, where nodes (genes, proteins, metabolites, etc.) are connected by edges that 

convey any type of association (e.g. relying in abundance or expression levels). In the 

case of gene co-expression networks (GCNs), edges represent similar gene expression 

behaviors, while in genome-wide transcription factor binding studies (e.g. ChIP-seq) 

edges represent direct target-regulator relationships. In protein-protein interaction 

networks, edges describe physically interacting protein pairs identified from techniques 

such as high-throughput yeast two-hybrid screens.  

Beyond single omics networks, integrative approaches associate the molecular 

components of an organism and combine them into higher order networks to model 

dynamic behaviors. The principle is based in the fact that despite individual functions of 

a single network may be undetermined, its biological role can sometimes be inferred 

through association with other networks. Integrated/combined networks provide a more 

complete information of a certain biological processes as they include two or more omics’ 

layers. In the case of combining several networks of the same type into a community 

network, this can also be beneficial to effectively reveal discrepancies between individual 

networks while stressing common associations across individual networks (Proost and 

Mutwil 2016). Networks of experimental evidence can be integrated by superimposing 

the nodes from individual networks. However, an appropriate integrative method requires 

biological data to be normalized, standardized, modeled and visualized in order to build 

an integrated model (Figure 8.4). Data modeling requires special attention as this analysis 

involves generalization and simplification steps with several assumptions (Yuan et al. 

2008).  



The first task to perform during the integration of different multi-dimensional 

omics data consists in matching the features within each omics, as they measure diverse 

types of molecules and the correspondence between them is not always straight forward. 

For instance, a single gene can produce several transcripts with different alternative 

splicing. Similarly, a single transcript can give rise to multiple proteins through different 

posttranslational processes, making it difficult to associate genes, transcripts and proteins 

when measured by genomics, transcriptomics and proteomics techniques. Moreover, 

cistromics and epicistromics measure transcription factor binding and occupancy of 

nucleosomes carrying distinct histone modifications in specific genomics regions. The 

association of these regions to target or regulated genes is not trivial. This problem can 

be tackled using different software packages such as RGmatch (Furió-Tarí et al. 2016), 

PeakAnalyzer or PeakAnnotator (Salmon-Divon et al. 2010).  

Additional challenges faced during multi-omics data integration are represented 

by the heterogeneity of the different data sets. Data from each omics is measured using 

different units whose typical ranges vary in several orders of magnitude. This can 

potentially affect data analysis and is typically solved using scaling and normalization 

techniques. Given the wide spectrum of possible normalization techniques it is necessary 

to apply as many as possible and asses their performance in order to choose the most 

appropriate technique for the data sets under study. The R package Normalyzer can be 

applied in this pre-processing of the data (Chawade et al. 2014).  

Once data pre-processing is completed and prior to the actual multi-omics 

integration, some exploratory analyses need to be conducted over the individual data sets. 

Due to the high dimensionality of omics data typically these analyses consist in 

techniques able to reduce complexity in order to extract relevant information. Principal 

Component Analysis (PCA) constitutes the most widely used projection method in this 



step. PCA is a multivariate analysis technique whose final goal is to reduce the 

dimensionality of a large multivariate data set. Here a set of new uncorrelated or 

orthogonal variables are computed as linear combinations or rotations of the original ones. 

These new variables are called principal components and they are defined in such a way 

that they are sorted according to the percentage of explained variability from the original 

data under the constrain of being orthogonal or uncorrelated. In this way, typically, the 

first two or three principal components are sufficient to capture most of the variability of 

the original data and therefore, a projection comprising only these principal components 

are further considered in the analysis. Graphical representations of the selected principal 

components are then used to assess the quality of data replicates, uncover problems raised 

during sample collection (e.g. batch effects) or to unveil underlying structure in the data 

by applying clustering techniques. Several R packages are available to perform this step 

such as factorMineR (Lê et al. 2008) and made4 (Culhane et al. 2005), among other 

methods. For instance, a clear example of data integration in grapevine was conducted by 

Blanco et al. (2015) by using Multiple Factor Analysis (MFA), where four types of 

quantitative variables were considered: metabolome data, RNA-Seq data from grape and 

the fungi Botrytis cinerea, and B. cinerea biomass measurements.  

Finally, multi-omics data integration is carried out. Normally, two different goals 

exist when integrating different omics. On one hand, researchers may be interested on 

exploratory analysis to identify the underlying relationship between two omics data sets. 

On the other hand, researchers may treat one of the omics data set as response variables 

that need to be predicted from another explanatory omics data set (considered as 

predictors). Here we discuss two statistical methods that exemplify these two goals. In 

both cases the input consists of two numerical matrices, Xn×p and Yn×q, that can be 



generated using two different omics technologies that detect and quantify p and q as 

different molecules from the same set of n samples.  

 

Canonical correlation analysis (CCA) This is an example of exploratory analysis that 

generates rotations or linear combinations, U and V, of the original data, X and Y, under 

the constrains of maximizing the correlation cor(Ui,Vi) with i = 1,…, min(p,q) and being 

uncorrelated or orthogonal. These are called canonical variates. Finally, like in any 

projection technique, only the two or three first canonical variates are considered to 

capture most of the correlation between the initial data X and Y. Several R packages are 

available to carry out this methodology such as CCA (González et al. 2008) and mixOmics 

(Rohart et al. 2017).   

 

(Sparse) Partial Least Square regression (s)PLS is an example of a multi-omics 

integration technique in which researchers aim at predicting one omics data set (or 

physiological data) from another one. In a similar fashion to CCA, rotations U and V of 

the original data are performed by maximizing the covariance. Projections retaining only 

two or three components are then considered to perform linear regression. To assess the 

predictive power of the developed model, cross-validation is commonly applied. In 

classical PLS regression all the original variables from X and Y are included in the rotation 

or linear combination making intractable the extraction of relevant information from the 

developed model. In order to tackle this, the sparse variant of PLS regression (sPLS; 

González et al. 2012) was introduced by using penalization terms based on the marginal 

contribution of each variable to the predictive power of the model in such way that some 

coefficient shrinks to zero removing the corresponding variable. This efficiently 

implements a feature selection technique. Graphical representations such as correlation 



circle plots, relevance networks and clustered image maps can be generated to facilitate 

the understanding and interpretation of the constructed model. The R packages pls (Mevik 

et al. 2007) and mixOmics (Rohart et al. 2017) implement the necessary functions to apply 

this methodology. 

 

8.5 Recent experiences in grapevine systems biology 

Throughout the last years several attempts for representing large biological data in 

networks have been conducted for elucidating the multilayered organization of biological 

processes in grapevine. In this species, integrated network analyses have been mostly 

adopted to predict gene functions or to contribute in the study of the regulatory 

mechanisms that control berry composition and development, trigger defense responses 

to biotic and abiotic stresses or that are influenced by the terroir (reviewed by Wong and 

Matus 2017; Fabres et al. 2017). Some research efforts have defined composite networks 

of genes and secondary metabolites for characterizing fruit ripening processes in red and 

white-skinned cultivars (Massonnet et al. 2018; Palumbo et al. 2014; Zamboni et al. 2010), 

whereas others have constructed gene co-expression networks to describe late stages of 

ripening (Ghan et al., 2017) or characterize transcriptional regulators related to 

development, metabolism or stress responses (Loyola et al. 2016; Wong et al. 2016; Sun 

et al. 2018). Processes involving the rewiring of berry metabolite-transcriptional 

networks under environmental perturbations such as drought (Savoi et al. 2016; Savoi et 

al. 2017) and elevated light exposure (du Plessis et al. 2017) have also been described. 

Proteomic/metabolomic composite networks (Wang et al. 2017) and those integrating 

genome-wide analyses of promoter regulatory elements (Wong et al. 2017) have also 

been generated. The integration of all these data in multilayered networks has allowed 



building complex maps of molecular regulation and interaction. Some relevant cases will 

be covered in this section. 

 

9.5.1 Identifying molecular hubs controlling light and cold response pathways 

The advent and continued adoption of high-throughput transcriptome profiling platforms 

in grapevine research has led to the vast expansion of transcriptome datasets representing 

a wide range of experimental conditions (e.g. specific tissue/organ and its associated 

developmental series, stress – abiotic and biotic, vineyard management strategies, etc.). 

Although each dataset has been generated to address specific goals of its overarching 

study, together, individual datasets can be compiled into large expression databases to 

mine for novel biological insights including, but not limited to, comparative 

transcriptomics between grapevine and other plants, gene co-expression network analysis 

and functional assignment of genes, and the discovery of condition-specific cis-regulatory 

motifs (reviewed in Serin et al. 2016). 

Genes involved in the same processes might share similar gene expression 

dynamics across an extensive collection of experiments. This relation, explained by the 

'guilt by association' principle (Wolfe et al. 2005), is fundamental to infer the roles of 

uncharacterized genes in co-expression networks. Transcription factors (TFs) comprise a 

suitable case of study for addressing the behavior of modules in GCNs as they exhibit 

plethora of protein-protein and protein-DNA interactions, shaping complex regulatory 

networks responsible for most developmental process. Such is the case of ELONGATED 

HYPOCOTYL 5 (HY5) and HY5 HOMOLOGUE (HYH), two bZIP master 

photomorphogenic orchestrators involved in developmental processes responsive to light 

environmental conditions. Loyola et al. (2016) combined microarray and RNA-Seq co-

expression data with a genome-wide binding site promoter inspection to identify HY5 



and HYH community gene co-expression and cis-regulatory sub-networks in grapevine. 

Search of potential gene targets identified a preferential regulation of photosynthetic-

related processes, heat-shock and DNA/protein repair processes, and regulation of the 

flavonol biosynthetic pathway. This study was crucial for describing the molecular 

mechanisms explaining the high radiation adaptive mechanisms that grapevines possess 

(reviewed by Matus, 2016). 

 Gene co-expression networks have also been integrated with transcription factor 

binding data to address grape responses to low temperature, in relation to the role of a 

MYB-like regulator termed AcQUIred tolerance to LOw temperatures (AQUILO; Sun et 

al. 2018). Here, the authors performed a multispecies GCN, incorporating gene co-

expression analysis and in silico TFBS data from grape, with co-expression (associated 

to the heterologous overexpression of AQUILO) and DAP-seq data in Arabidopsis. The 

relevance of this study came from the finding that AQUILO was tightly associated with 

the raffinose family of oligosaccharides (RFOs), a connection that was later validated by 

quantifying these osmoprotectant molecules in cold-treated grape AQUILO-

overexpressing calli.   

 

8.5.2 Regulation of phenylpropanoid metabolism 

 

Presently, the most widely adopted methodology to identify candidate transcriptional 

factors (TFs) involved in secondary metabolism pathways in grapevine involves the 

inference of function via sequence homology with functionally characterized proteins 

from model plants (for example, see Hichri et al. 2010, Cavallini et al. 2015 and Matus 

et al. 2017). However, in the recent years many of these regulators have been prioritized 

by using gene co-expression network analyses. For example, the putative functions of 



134 grapevine R2R3-MYB genes were inferred based on their top 100 co-expressed genes 

(Wong et al. 2016). This study revealed that GCNs of many R2R3-MYB TFs (46 genes) 

were enriched with secondary metabolism-related functions. Demonstrating the power of 

such method is the ability to recover expected relationships between structural pathway 

genes and their known transcriptional regulators. For example, this was demonstrated 

with the frequent co-expression of large suites of STILBENE SYNTHASE genes (STSs) 

with VviMYB14 and VviMYB15, two R2R3-MYB TFs involved in the regulation of STS 

(Höll et al. 2013). Similar inferences were accounted for VviMYB13, a close homolog of 

VviMYB14 and VviMYB15, therefore suggested as involved in the regulation of tissue- 

and stress-specific STS expression (Wong et al. 2016). Two recent studies have also used 

STS genes as ‘guides’ to identify co-expressed TFs in both condition-specific (Wong and 

Matus 2017) and -independent contexts (Vannozzi et al. 2018). A berry-specific GCN 

encompassing five red cultivars across four key berry developmental stages revealed 

novel roles for AP2/ERF and WRKY TFs in the regulation of STSs. TFs of the latter two 

families were not only frequently co-expressed with STSs but were also enriched for their 

respective TF binding sites (TFBS) in the promoters of many STSs. Recent studies have 

now demonstrated that VviWRKY24 and VviWRKY03 are additional players in the 

regulation of STSs at various hierarchies – acting as singular effector or in synergy with 

VviMYB14 to activate STSs (Vannozzi et al. 2018).  

The integration of non-coding RNA network analysis to existing condition-

specific GCNs has also been presented to unravel the regulation of phenylpropanoid and 

flavonoid biosynthesis during berry development and ripening (Wong and Matus 2017). 

One of the key findings from this initiative was the discovery of long non-coding RNAs 

(lncRNAs) that were not only strongly correlated with key structural pathway genes but 

were also located in close proximity to their co-expressed gene). The lncRNA 



VIT_210s0042n00100, present in close proximity with all nine VviSTSs of chromosome 

10 presented consistent co-expression with all of them. Another case represents one 

predicted lncRNA (VIT_203s0180n00020) that is linked to VviGT2 through strong co-

expression and co-location. This gene encodes an enzyme putatively involved in 

hydroxycinnamic ester biosynthesis and proanthocyanidin galloylation (Khater et al. 

2012).  

GCN approaches may reveal additional layers and deconvolute the complexities 

of secondary metabolic pathway regulation in grapevine. Indeed, in a first study of its 

kind, Zhang et al. (2018) demonstrated that multiple lncRNAs, named LNC1 and LNC2, 

were involved in the regulation of anthocyanin biosynthesis in fruits of sea buckthorns 

(Hippophae sp.) by serving as endogenous target mimics (eTM) of miR156a and miR828, 

respectively. Functional studies confirmed that silencing of LNC1 and LNC2, led to the 

induction and repression of anthocyanin biosynthetic pathway gene expression and 

anthocyanin levels in fruits, respectively, validating the integrated lncRNA-miRNA-

mRNA network prediction. 

 

9.5.3 The fight club goes dry: networks related to grape berry ripening in response 

to drought 

To understand the molecular mechanisms underpinning berry development and ripening 

at greater detail, recent efforts have focused on understanding the transcriptome dynamics 

in multiple cultivars across the entire process of berry development and ripening. A study 

by Massonnet et al. (2018) represented the first monumental study to catalogue the 

genome-wide transcriptional profile of ten Italian grapevine varieties at four critical 

stages of berry development, all being cultivated in a single vineyard. In less than a 

handful of studies, network-based approaches have been applied to identify genes 



potentially involved in critical developmental stage transitions. Such cases often 

complement the findings from the widely-adopted differential expression analysis but are 

also pivotal in revealing novel genes and relationships that were otherwise unattainable 

from traditional differential expression methods. For example, berry-specific gene co-

expression network analysis encompassing immature-to-mature transitions has been 

particularly insightful in revealing groups of genes with distinct topological properties 

that can be classified into ‘party’, ‘date’ (see Han et al. 2004 for details), or ‘fight-club’ 

hubs (Palumbo et al. 2014).  Genes that belong to the ‘fight-club’ hubs in particular were 

often negatively correlated with their interacting partners in gene co-expression networks, 

and those who do, were inferred as biologically relevant ‘switches’ fulfilling negative 

regulatory roles in the transition of major developmental phases such as ripening. 

Although the identity of these major switches was first documented in red grapevine 

varieties, recent research has now ascertained several common but also reveal variety (red 

and white-skinned)-specific switch genes (Massonnet et al. 2018). From a total of 271 

berry-specific switch genes identified to date, 131 genes were in common in both varieties 

while 81 and 50 genes were specific to all white and red varieties, respectively. A large 

proportion of these ‘switches’ encode for transcription factors (31 genes), followed by 

genes involved in stress responses (31 genes), carbohydrate metabolism (22 genes), 

signaling (20 genes), secondary metabolism (20 genes), and cell wall metabolism (18 

genes), among others (Massonnet et al. 2018). 

Recent works have provided evidence for the involvement of multiple stress 

regulons – both ABA-dependent and ABA-independent (reviewed in Nakashima et al. 

2014) – in the berry ripening program (Savoi et al. 2017). Certain TF families (e.g NAC, 

bZIP, AP2/ERF) that share co-expression with downstream water deficit stress-

responsive genes may be required to orchestrate the balance between the progression of 



berry development and stress-associated transcriptional regulation. Further analysis of 

gene co-expression and gene-metabolite co-response networks of the berry subjected to 

water deficit stress across critical berry development and ripening phases revealed several 

distinct modules that were congruently induced by ripening and water deficit stress (Savoi 

et al. 2016; 2017). Here, metabolome and transcriptome integrated network-based 

analysis revealed close associations between the expression behaviors of module 

members (especially the activation of multiple signal transduction pathways) and the 

dynamics of key central and specialized metabolites involved in the drought response (e.g. 

proline, branched-chain amino acids, phenylpropanoids, anthocyanins, and free volatile 

organic compounds). For example, the grapevine homologue of Arabidopsis ERF1, a key 

regulatory component of the jasmonate and ethylene signaling network (Cheng et al. 

2013), whose expression was congruently induced by ripening and water deficit stress, 

was also identified to be a common berry ‘switch’ gene. While its precise regulatory role 

remains to be elucidated, integrated network analysis positioned ERF1 as a putative 

regulator of proline and anthocyanin accumulation in the berry (Savoi et al. 2017). 

VviERF1 was significantly co-expressed with pyrroline-5-carboxylate synthase (P5CS) 

and VviMYBA2, the key structural gene of proline biosynthesis and a key regulatory gene 

of anthocyanin biosynthesis in the berry, respectively and shared significant correlation 

with various anthocyanin compounds. The presence of potential AP2/ERF TFBS (i.e. 

DRE and GCC-box) situated within the promoter region of P5CS and MYBA2 further 

reinforce its involvement as a regulator of berry composition during ripening and water 

deficit stress.  

 

9.5.4 Non-coding RNA networks within grape-fungi pathosystems  



Grapevine diseases caused by biotic agents can be devastating for the wine and 

table grape industries. Among fungal-related disorders, grape trunk diseases together with 

downey and powdery mildew are among the most important pathologies, causing 

significant economic losses in vineyards practically all over the world. The symptoms of 

downey mildew, caused by Plasmopara viticola, are quite detrimental, as for instance, as 

soon as fruits become infected, berries completely dry out. The Vitis sp. – P. viticola 

association is of great interest as this oomycete is an obligate biotroph and relies entirely 

on the host to complete its life cycle (i.e. needs to keep its host cells alive before 

sporulation; Grenville-Briggs and van West 2005), and also because North American 

Vitis species are naturally resistant (Polesani et al. 2010). In order to model this complex 

pathosystem, Brilli et al. (2018) performed a multi-omics and multi-species functional 

genomic study. The authors sequenced and assembled the draft genome of P. viticola, 

identifying the lost metabolic features responsible for its total dependence on the grape 

host, and further studied the fungus transcriptome changes occurring during the infection 

process, identifying a protein triggering immunity in the resistant V. riparia. The most 

striking results from this study arise from the small RNA sequencing (sRNA-Seq) 

analysis in control and infected plants at different times after the infection, combined with 

genome-wide degradome (or parallel analysis of RNA ends) analyses in both the plant 

and the oomycete. As a result, a large number of sRNA-mediated cleavages exclusively 

occurred in infected tissues, where sRNAs produced by P. viticola triggered cleavage of 

grapevine genes while sRNAs processed from grapevine transcripts targeted the fungus 

mRNAs, unveiling a bi-directional RNA silencing network mediated by non-coding 

RNAs shuffling between the pathogen and its host (Brilli et al. 2018). As more pathogen 

genomes become available, a broader understanding of pathosystems and their dynamics 



will be achieved, especially regarding the roles of secreted effectors in interfering plant 

immune recognition (reviewed by Dalio et al. 2018).  

Grape pathogen responses have been recently studied by addressing potential 

interactions of transcription factors and cis-regulatory element (CRE), and also by 

constructing gene co-expression networks (GCNs) of plant gene families related with 

defense. Wong et al. (2017) performed a genome-wide analysis of known plant CREs in 

all grape predicted protein-coding gene promoters, constructing an integrated CRE-

driven network. Numerous CRE-driven modules inferred from using condition-

dependent GCNs suggested important roles in pathogen stress responses. For example, 

GCC-core sub-modules were contained in many genes that were highly induced in berries 

and leaves infected with fungi such as Botrytis cinerea and Erysiphe necator. Finally, 

gene co-expression networks of the ATL protein family showed that many of these E3 

ubiquitin ligases were induced in grapevine–pathogen interactions including P. viticola 

and necrotrophic fungi (Wong et al. 2018).  

 

8.6 Resources 

Next-generation sequencing as well as traditional Sanger sequencing methods are of great 

significance in unraveling the complexity of plant genomes. These are constantly 

generating heaps of sequence data to be analyzed, annotated and stored, thus creating a 

revolutionary demand for resources and tools to manage and handle these necessities 

(Basantani et al. 2017). Here we present a brief compilation of web resources that are 

either specific for grape or encompass a variety of species including Vitis sp (Table 2). 

At least two grape-specific platforms have been effectively used to study the 

extent of gene regulatory networks: the ViTis Co-expression DataBase (VTCdb; Wong 

et al. 2013) and VESPUCCI (Moretto et al. 2016). These resources have played an 



important role in determining the roles of genes related to photomophogenic responses 

and secondary metabolism in targeted functional studies (Loyola et al. 2016; Malacarne 

et al. 2016). Integration of multi-omics datasets (i.e. gene expression, metabolite, and 

protein profiles), mapping of data onto relevant molecular networks, and the visualization 

of the dynamic interactions between the various molecular classes are also the first few 

steps when performing any systems biology experiments. Tools such as Cytoscape 

(Shannon et al. 2003) have been specially designed for this task and have been largely 

adopted by the grape research community to visualize and analyze complex networks. In 

addition, one ongoing Initiatives in grapevine, VitisNet (Grimplet et al. 2009a) serve as 

a resource for manually curated functional gene annotation and provides a wide range of 

manually curated pathway-level molecular networks (over 240 categories) as templates 

for grapevine systems biology experiments.  

The increasing release of plant genomes provided unseen opportunities and 

challenges for comparative genomics resources.  Indeed, different genomics multi-

species platforms also exist constituting relevant hubs to exploit omics data in grape. For 

instance, recent examples include the fruitENCODE platform 

(http://www.epigenome.cuhk.edu.hk/encode.html) that provides a comprehensive 

repository oriented to shed light on the genetic and epigenetic basis of fruit ripening in 

climacteric and non-climacteric species. Multi-species GCNs allowing comparative co-

expression analysis are also now available for many plants including grapes (Table 2). 

Resources such as ATTED-II (http://atted.jp/) are amongst the most popular, providing 

the opportunity to query microarray and RNA-seq GCNs using the ‘guide’ gene approach.  

ATTED-II also allows assessments of co-expression conservation of co-expressed genes 

across different plant lineages (Obayashi et al. 2018). The Plant Omics Data Center 

(PODC; http://plantomics.mind.meiji.ac.jp/podc/) is a NGS-derived gene expression 



network repository aimed at integrating large-scale omics resources for a broad range of 

species (Ohyanagi et al., 2015).  Such resources may be used in conjunction with existing 

grapevine-specific co-expression platforms to build community GCNs or to gain 

additional insights into the evolutionary context of conserved and/or species-specific co-

expressed genes relationship.   

Additional multi-species platforms gathering grape’s omics and mainly aimed at 

comparative studies include Ensembl Plants (http://plants.ensembl.org) (Bolser et al., 

2016), Phytozome (https://phytozome.jgi.doe.gov/pz/portal.html) (Goodstein et al., 

2012), PlantGDB (http://www.plantgdb.org/) (Duvick et al., 2008) and AraNet v2 

(http://www.inetbio.org/aranet) (Lee et al., 2015).  These integrative resources 

encompassing genome-scale information (genome sequence, gene models, functional 

annotation, polymorphic loci, expression) offer a variety of sequence analysis tools and 

web services. Example of integrative platforms also come from other species including 

both model (Araport, Solgenomics) and non-model (Melonomics, Ginseng Genome 

Database) plants. A common feature underlying these resources rely on the use of 

customized instances of JBrowse (Buels et al. 2016), a fast and full-featured genome 

browser built with JavaScript and HTML5. Thanks to its speed, scalability and versatility 

this platform supports complex interactive queries on large track sets representing a 

suitable and solid mean to handle omics data in a genomic context. In addition, a variety 

of analysis functions can readily be added using the plugin framework (e.g. visualization 

of whole-genome bisulfite sequencing data, glyphs for variants and GWAS data, small 

RNA visualization, etc.). Very recently, a JBrowse (v. 1.11.5) was set up to visualize and 

give access to some omics data in the Vitis vinifera 12X.v2 PN40024 assembly 

(https://urgi.versailles.inra.fr/jbrowse/gmod_jbrowse/?data=myData/Vitis/data_gff) 

(Canaguier et al. 2017). The platform hosts 11 annotations tracks, including the different 



releases of the grapevine genome annotations (CRIBI v1, CRIBI v2, Genoscope, Cost v3, 

etc.), automated and manual curated transposable elements annotations and manual 

curated gene family sets. In addition, 12 tracks highlighting the variants coming from re-

sequencing experiments are also present in the platform, which could help in the 

identification of useful markers for applied research purposes.  

 

8.6.1 VESPUCCI and NES2RA as grape-oriented resources 

Exploring shifts in gene expression as response to different experimental 

conditions has become commonplace whilst transcriptomic experiments are being 

performed on a daily basis. Public available gene expression datasets, however, conceal 

most of their true potential since they are meant to answer to a specific biological question 

and aren’t considered in the light of a wider context. Within transcriptomics, we have 

witnessed a major shift in data production with the advent of high-throughput sequencing 

technologies. Despite nowadays Illumina sequencing is the de facto standard for RNA-

seq experiments, microarrays are still extensively used and, more importantly, constitute 

a wealth of public information available to be explored. 

With the advent of systems biology approaches in grapevine research, data 

integration arises as a leading aspect to take advantage of such rich sources of information 

(Gligorijević and Pržulj 2015). Different methods have been proposed to carry out the 

task of effectively integrating gene expression data and can be usually divided in two 

categories: i) direct integration and ii) meta-analysis. Direct integration (Rung and 

Brazma 2013) considers the sample-level measurements within each study and merges 

them into a single data set. The latter (Garrett-Mayer et al. 2008), instead, integrates gene 

expression analysis combining information from several data sources defining confidence 



levels for each study individually (without a general scheme) and is commonly used to 

integrate conclusions coming from different studies. 

One of the platforms used for data integration in transcriptomics is COLOMBOS 

(Moretto et al. 2016a), originally named as a COLlection Of Microarrays for Bacterial 

OrganismS, which was developed for three bacterial species (Escherichia coli, Bacillus 

subtilis, and Salmonella enterica serovar Typhimurium) and later updated with others 

prokaryotic species and also including RNA-seq technology. The implementation of the 

COLOMBOS framework to the Vitis species led to the development of VESPUCCI 

(Moretto et al. 2016b) (Vitis Expression Studies Platform Using COLOMBOS 

Compendia Instances), an integrated gene expression database for grapevine that 

originally included 1,500 samples at the time of its first release and now has doubled in 

size including most of publicly available transcriptomic data. 

Both VESPUCCI and COLOMBOS fall under the direct integration methodology. 

Their approach to data integration is unique in the sense of directly combining gene 

expression information from different technological platforms and experiments, without 

the need for batch-normalization since it calculates log-ratios for contrasts, i.e. samples 

being compared that come from the same experiment and platform combination (a 

‘batch’). This results in crossing out a high proportion of batch-related variation (Luo et 

al. 2010). While gathering a large amount of data is made easy for model organisms like 

E. coli (due to the abundant number of experiments available), for non-model species the 

situation is different as only fewer experiments are usually performed. In this case the 

importance of transcriptomics data integration is even more significant as an adequate 

magnitude of data is needed to be able to draw valid and general conclusions. In this sense, 

working with plant species highlighted the need for the authors to significantly rethink 

some aspects of the data acquisition and annotation process. The creation of a gene 



expression compendium using COLOMBOS technology is facilitated by the use of 

COMMAND (Moretto et al. 2019), a web-based application used to download, collect 

and manage gene expression data from public databases, but it is still mainly a manual 

effort. The peculiarity and complexity of plant transcriptomes and experimental designs 

in plant biology require the ability to manage how probes (for microarray) and short read 

sequences (for RNA-seq) are mapped and thus assigned to genes. The concept of 

‘measurable transcript’ was also used to account for some technical limitations that 

prevent the possibility to precisely distinguish among genes with high sequence similarity.  

In VESPUCCI, data and experiment-related information (meta-data) are collected and 

curated starting from raw intensities (for microarrays) and raw sequence reads (for RNA-

Seq). A robust normalization method and a quality control procedure are performed to 

allow the direct comparison of gene expression values across different experimental 

conditions (Engelen et al. 2011). This results in a single coherent gene expression matrix 

in which each row represents a gene and each column represents a ‘sample contrast’. 

Sample contrasts measure the difference (in log scale) between a test and a reference 

condition, both which are designed a priori by curators during the compendium creation 

process. The expression data itself is a matrix of log-ratios (base 2), so that positive values 

represent up-regulation, and negative values represent down-regulation of a gene in the 

test sample compared to the reference sample. VESPUCCI’s main goal is to gather 

together as many expression data as possible to explore patterns of co-expression across 

several experimental conditions and to provide a high-quality gene expression database 

to be used for downstream analysis. The creation of a co-expressed genes cluster (known 

as module) is performed similarly to a BLAST (Camacho et al. 2009) search in which the 

users can look for expression values for a given set of conditions but using expression 

correlation instead of sequence similarity to score the best matches. Modules can be 



modified in several ways in order to highlight the behavior of the genes of interest and to 

analyze (anti)co-expression patterns. 

Considering that gene expressions are represented as relative values, it is 

fundamental to extensively annotate samples with various sorts of meta-data to ensure 

that valid biological conclusions can be drawn from the exploration of the compendium. 

One of VESPUCCI’s biggest effort and most notable feature is the manual curation and 

quality check of samples. Each sample has been annotated by curators using controlled 

vocabularies to ensure both human readability and computational tractability. To 

completely fulfill the properties of the FAIR (Findable Accessible Interoperable Reusable) 

principles (Wilkinson et al. 2016), VESPUCCI is undergoing a constant renovation to 

exploit standards and bio-ontologies for data annotation. Finally, the interface is the other 

pivotal point towards seamless integration with other services and tools and has been 

designed to adapt to users’ needs, as well as to simplify the implementation of other tools 

on top of it. One example of such means is the NES2RA algorithm (Asnicar et al. 2018), 

a mining tool for transcriptomic data used to expand a known local gene network (LGN) 

by finding new related genes. This method has been applied to the grapevine 

transcriptomic dataset using VESPUCCI as data source to expand LGNs related to the 

secondary metabolic pathways for anthocyanin and stilbenoid synthesis and signaling 

networks related to the hormones abscisic acid and ethylene (Malacarne et al. 2018). 

Compared to Pearson correlation, NES2RA LGNs show less edges as it removes less 

significant interactions, due to noisy or redundant information. This allows to reduce the 

complexity of the network and focus on the network topology and the most likely gene 

interactions. NES2RA is computationally demanding and relies on the BOINC platform 

that distributes supercomputation tasks among computers made available by the 

volunteers participating in the gene@home project. 



Besides the importance of having a single point of access to easily check at what 

is already available in terms of transcriptomic experiments in grapevine and, of course, 

the possibility to empower data analysis with thousands of integrated samples, the 

development of VESPUCCI has led to few considerations about the importance of 

correctly annotating experiments, extrapolable to all types of resources. Building the 

compendium itself was the most time-consuming step, as curators devoted their time and 

ongoing effort to describe sample conditions and their key descriptors, after carefully 

reading the experiment descriptions as well as scientific papers. The importance of early 

annotation of experiments as soon as (or even before) data are available is also underrated. 

It is often considered as an annoying request to fulfill before the publication, while it 

should be treated as an integral part of the experimental design with the same importance 

as notes and protocols written in lab notebooks have. 

 

8.7 Final remarks 

The accuracy of molecular systems biology relies on efficient methods that handle, 

analyze and visualize large omics data sets. However, it has become evident that the use 

of a single omics technology is not sufficient to develop predictive models, which in turn 

is the ultimate goal of this new discipline. Accordingly, the multiple use of technologies 

such as transcriptomics, cistromics, epicistromics, proteomics and metabolomics, over 

the same samples or biological conditions has started to be a central methodology in plant 

molecular systems biology. Multi-omics network modeling has proven to be a successful 

advance for unraveling the structure of biological processes in plants, as it allows 

identifying the key components and interactions for system regulation. Conversely, 

networks frequently require assumptions for data modeling, and since their methods may 

rely on the existing knowledge regarding the components and interactions of a system, 



they can evolve to more exactly represent a biological system. Thus, data should be 

interpreted carefully while these approaches can be complemented by reductionist 

methods. Notwithstanding these limitations, the use of these methodologies in grapevine 

research have provided novel perspectives for interpreting omics data and despite its just 

starting, it is already challenging the analysis of the large amount of data that its being 

generated for this species.   
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Tables and Figures 

Table 8.1. Number of SRA experiments (No. of SRA) and Gbp of data produced (Gbp 

of data) for grapevine cultivars according to the type of the library source (genomic or 

transcriptomic).  

 

 
 

GENOMIC  TRANSCRIPTOMIC 
CULTIVAR  No of SRA Gbp of data No of SRA Gbp of data 
Cabernet Sauvignon 6 166.59  393 805.27 
Barossa Shiraz 197 68.22    

Pinot noir  15 44.16  115 341.59 
Chardonnay  95 2544.81  34 48.67 
Merlot  2 0.00  74 277.67 
Carmenere  63 147.27    

Muscat table    54 508.32 
Pinot Meunier 4 31.89  48 137.02 
Thompson Seedless 3 10.63  49 174.05 
Sangiovese  3 0.01  47 61.49 
Sauvignon blanc 2 0.01  35 199.50 
Tempranillo     36 143.73 
Riesling  2 34.24  31 51.64 
Cabernet Franc 2 0.01  28 85.89 
Tocai friulano    30 35.50 
Barbera  1 0.01  19 47.36 
Kyoho     20 176.67 
Semillon  3 8.61  16 40.41 
Vermentino  4 12.84  12 39.80 
Gaglioppo     15 50.45 
Garganega  2 0.01  12 38.85 
Primitivo di Manduria 2 18.16  12 42.64 
Tannat  2 65.20  11 79.96 
Carignan     12 39.14 
Glera     12 42.68 
Koshu     12 31.01 
Moscatel Galego    12 50.10 
Moscato bianco    12 43.17 
Muscat Hamburg 3 0.96  9 13.42 
All other cultivars 1224 4557.52  1344 4340.34 
ND   958 3905.94  1269 3983.17 

ND: information not available in SRA archive 
 

 

 

 

 

 



Table 8.2. Online resources useful for gene network mining in grapevine. For multi-species DB, only grapevine-specific features are highlighted. 
GRN = Genome-wide transcriptional regulatory interaction network. Vis.: visualization 
 
 

DB name Type Species Datatypes Features Query examples: Webcite 

ATTED-II GCN 
multi-
species 

(9) 

Co-expression 
(Microarray, RNA-seq) 

Grape GCN were constructed using RNA-
seq and Nimblegen arrays. Similarity 

metric = MR 

1. 'Guide' gene lists. 
2. Comparative analysis of CEG 

rankings across multiple 
species. 

http://atted.jp/ 

CoNekT GCN 
multi-
species 

(7) 

Co-expression (RNA-
seq) 

Grape GCN were constructed using RNA-
seq.  Similarity metric = HRR. 

1. 'Guide' gene lists. 
2. Comparative analysis of CEG 

rankings across multiple 
species. 

http://conekt.mpi
mp-

golm.mpg.de/pub/ 

AraNet/ 
AraNetv2 

Integrated 
(CFN) 

multi-
species 

(29) 

19 datatypes (e.g. co-
expression, domain co-
occurrence, genomic 

neighborhood of 
orthologs, protein-

protein interactions, 
phylogenetic profile). 

Grapevine gene function were inferred 
using any combination of the associated 
datatypes. Some include orthology-based 
projections from model plant species (i.e. 

Arabidopsis). 

1. 'Guide' gene lists. 
http://www.inetbi

o.org/aranet 

PODC 
Integrated 

(CFN) 

multi-
species 

(11) 

Co-expression (RNA-
seq), natural language 

processing-based 
curation 

Grape GCN were constructed using RNA-
seq. Similarity metric = PCC and Distance 

in Correspondence Analysis (DCA) 
1. 'Guide' gene lists. 

http://plantomics.
mind.meiji.ac.jp/p

odc/ 

COP GCN 
multi-
species 

(8) 

Co-expression 
(Microarray) 

Grape GCN were constructed using 
Affymetrix microarray data. Similarity 
metric = Cosine correlation (CC). Not 

recommended for grapevine, but fine for 
Arabidopsis. 

1. 'Guide' gene lists. 
http://webs2.kazu
sa.or.jp/kagiana/c

op0911/ 

PLANEX GCN 
multi-
species 

(8) 

Co-expression 
(Microarray) 

Grape GCN were constructed using 
Affymetrix microarray data. Similarity 
metric = PCC. Not recommended for 
grapevine, but fine for Arabidopsis. 

1. 'Guide' gene lists. 
http://planex.plant
bioinformatics.org

/ 

ePlant Vis. Grape Gene expression 
Interactive grapevine gene atlas expression 

browser. 
1. 'Guide' gene lists. 

http://bar.utoronto
.ca/efp_grape/cgi-

bin/efpWeb.cgi 



PlantReg 
Map 

GRN 

multi-
species 

(132 
species) 

CHIP-seq, DAP-seq, 
PBM, literature curation 

Grapevine TF binding sites were 

inferred using orthology-based 

projections from model plant species 

(i.e. Arabidopsis).  

Genome-wide TFBS analysis of 

grapevine promoters. 

1. 'Guide' gene lists to query 
downstream target genes of 

input gene (i.e. TFs) 
2.  'Guide' gene lists to query 
upstream regulators (TFs) of 

input genes 

http://plantregmap
.cbi.pku.edu.cn/ne

twork.php 

VitisNet Vis. Grape 

Manually-curated 
molecular networks 
encompassing 247 
distinct biological 

processes. 

Allows the visualization of multi-omics 

datasets (i.e. genes, proteins or 

metabolites) simultaneously on these 

molecular networks. 

1. Downloaded networks can be 
imported into Cytoscape for 
further multi-omics datasets 

visualization 

https://www.sdsta
te.edu/vitisnet-

molecular-
networks-
grapevine 

STRING 
Integrated 

(CFN) 

multi-
species 
(2,031 
species 

plants & 
animals) 

8 datatypes (e.g. gene 
neighborhood, gene co-
occurrence, textmining, 
co-expression, protein 

homology) 

Grapevine gene function were inferred 

using any combination of the associated 

datatypes. Some include orthology-

based projections from model plant and 

non-plant species. Similar to AraNet. 

1. 'Guide' gene lists. 
https://string-

db.org/ 

VTCdb GCN Grape 
Co-expression 

(Microarray, RNA-seq) 

Grape GCN were constructed using RNA-
seq and Nimblegen arrays. Similarity 

metric = MR, HRR, PCC. 

1. 'Guide' gene lists. 
2. Biological processes of 

interests 

http://vtcdb.adelai
de.edu.au/Home.a

spx 

Vespucci GCN Grape 
Co-expression 

(Microarray, RNA-seq) 

Grape GCN were constructed using RNA-
seq and multiple microarray platforms. 
Similarity metric = PCC. Includes an 

exploratory tool to analyze expression of 
genes across 1,608 manually-curated 
(vocabulary-controlled) experimental 

conditions. 

1. 'Guide' gene lists. 
http://vespucci.col
ombos.fmach.it/ 

grape_ 
sRNA_ 

atlas 
miRNA Grape miRNA (RNA-seq) 

Grape miRNA-target (gene) networks 
were constructed using a comprehensive 

miRNA catalogue (both known and novel) 
and in silico target prediction analysis. 
miRNA expression browser available. 

1. miRNA query 

https://mpss.danfo
rthcenter.org/dbs/i
ndex.php?SITE= 
grape_sRNA_atla

s 

BIOWINE miRNA Grape miRNA (RNA-seq) 
Grape miRNA-target (gene) networks 
were constructed using in silico target 

prediction analysis. 

1. miRNA query 
2. Biological processes of 

interests 

https://alpha.dmi.
unict.it/biowine/ 

 



 
  



 
Figure 8.1. The Oltvai and Barabási’s pyramid of life reviewed by systems biology approaches. The complexity of a biological system can 
be represented by several layers of functional organization. Starting from the cell’s building blocks; the life biomolecules, these are responsible 
for the genetic information to be stored, processed and finally executed in several developmental programs or in response to the environment. 
Genes and their epigenetic marks, transcripts, proteins and their modifications, metabolites and their fluxes and even ions can be collectively 
characterized and quantified through omics. The huge amount of data acquired from these technologies can only be handled with intensive 
bioinformatics. At the second level, biomolecules form gene-regulatory and protein-interacting motifs and subcellular signaling /metabolic 
pathways, all of them with the inherent capacity of impacting each other. As these biological processes are tightly connected (e.g. a set of genes, 
proteins and metabolites being activated in response to a pathogen) they are organized in functional modules. Complex biological processes can 
be studied from a ‘multi-omics’ perspective thanks to the recent improvements in genome-wide techniques and systems biology methods. Modules 



can be studied by integrative systems biology tools but can be further organized in higher hierarchical multidimensional structures. Larger-scale 
modules are also dynamic in time and translate into phenotypes. In recent efforts modeling algorithms have been applied to largely annotate 
phenotypes (i.e. ‘phenomics’). Computational biology has supported an adequate data management, efficient data analysis, and user-friendly 
software applications to study biological systems at each of these levels. Although the individual components are unique to a given organism, the 
topologic properties of networks are surprisingly similar (Adapted from Oltvai and Barabási, 2002). 
 

 
Figure 8.2. Schematic representation of Molecular Systems Biology as a discipline resulting from the overlapping of computational, 
mathematical and biological explorations. 



 
 
Figure 8.3. Next-generation sequencing and array data available for grapevine. Next-generation sequencing and oligonucleotide array have 
represented two relevant genome-scale methodologies for grapevine studies. The data presented were retrieved from the Sequence Read Archive 
(SRA) (https://www.ncbi.nlm.nih.gov/sra) and Gene Expression Omnibus (GEO) NCBI  repositories (https://www.ncbi.nlm.nih.gov/gds/) as of 
July 2018, by using a keyword search “Vitis” or “Grapevine”. a) timeline of grapevine experiments performed since 2005 according to the 
methodology used (in situ oligonucleotide array or NGS). b) Number and distribution of grapevine experiments from high-throughput sequencing 



technologies. The inner circle represents the distribution according to the library layer (Genomics, Transcriptomics, Metagenomics) while the outer 
circle is according to the library strategy used (e.g. RNA-seq, Chip-seq, etc). For each outer section the number of experiments (SRA) and the Giga 
base pair of data (Gbp) were also reported. c) distribution of the NGS platforms used, including Roche 454 GS System, Illumina Genome Analyzer, 
Applied Biosystems SOLiD System, Helicos Heliscope, Pacific Biosciences SMRT. 
 

 
 
Figure 8.4. Methods for building integrative network models. Different omics technologies generate data with diverging formats (e.g. numerical 
scales) and therefore are considered as multidimensional. A hypothetical regulatory network for the berry color locus was used to illustrate how 
gene co-expression, transcription factor binding and metabolic data can be integrated to generate a composite network. These can be generated by 
applying scaling and normalization algorithms to all omics datasets (at the left) or by superposing independently-produced networks (on the right). 
The main anthocyanin regulator MYBA1 is centered in the network. Its co-expressed genes were taken from previous gene GCN analyses (Wong 



et al. 2016). Direct regulation examples are taken from experimental evidence (e.g. Matus et al., 2017). Cyanidin or malvidin-related derivatives 
(di or tri-hydroxylated anthocyanins) are represented by ‘Cy-3G’ and ‘Mv-3G’, respectively. Resvt: the stilbene resveratrol. 


