223 research outputs found

    Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1

    Get PDF
    In order to gain a more global view of the activity of histone demethylases, we report here genome-wide studies of the fission yeast SWIRM and polyamine oxidase (PAO) domain homologues of mammalian LSD1. Consistent with previous work we find that the two S. pombe proteins, which we name Swm1 and Swm2 (after SWIRM1 and SWIRM2), associate together in a complex. However, we find that this complex specifically demethylates lysine 9 in histone H3 (H3K9) and both up- and down-regulates expression of different groups of genes. Using chromatin-immunoprecipitation, to isolate fragments of chromatin containing either H3K4me2 or H3K9me2, and DNA microarray analysis (ChIP-chip), we have studied genome-wide changes in patterns of histone methylation, and their correlation with gene expression, upon deletion of the swm1+ gene. Using hyper-geometric probability comparisons we uncover genetic links between lysine-specific demethylases, the histone deacetylase Clr6, and the chromatin remodeller Hrp1. The data presented here demonstrate that in fission yeast the SWIRM/PAO domain proteins Swm1 and Swm2 are associated in complexes that can remove methyl groups from lysine 9 methylated histone H3. In vitro, we show that bacterially expressed Swm1 also possesses lysine 9 demethylase activity. In vivo, loss of Swm1 increases the global levels of both H3K9me2 and H3K4me2. A significant accumulation of H3K4me2 is observed at genes that are up-regulated in a swm1 deletion strain. In addition, H3K9me2 accumulates at some genes known to be direct Swm1/2 targets that are down-regulated in the swm1Âż strain. The in vivo data indicate that Swm1 acts in concert with the HDAC Clr6 and the chromatin remodeller Hrp1 to repress gene expression. In addition, our in vitro analyses suggest that the H3K9 demethylase activity requires an unidentified post-translational modification to allow it to act. Thus, our results highlight complex interactions between histone demethylase, deacetylase and chromatin remodelling activities in the regulation of gene expression

    Extracellular Hsp72 concentration relates to a minimum endogenous criteria during acute exercise-heat exposure

    Get PDF
    Extracellular heat-shock protein 72 (eHsp72) concentration increases during exercise-heat stress when conditions elicit physiological strain. Differences in severity of environmental and exercise stimuli have elicited varied response to stress. The present study aimed to quantify the extent of increased eHsp72 with increased exogenous heat stress, and determine related endogenous markers of strain in an exercise-heat model. Ten males cycled for 90 min at 50% O2peak in three conditions (TEMP, 20°C/63% RH; HOT, 30.2°C/51%RH; VHOT, 40.0°C/37%RH). Plasma was analysed for eHsp72 pre, immediately post and 24-h post each trial utilising a commercially available ELISA. Increased eHsp72 concentration was observed post VHOT trial (+172.4%) (P<0.05), but not TEMP (-1.9%) or HOT (+25.7%) conditions. eHsp72 returned to baseline values within 24hrs in all conditions. Changes were observed in rectal temperature (Trec), rate of Trec increase, area under the curve for Trec of 38.5°C and 39.0°C, duration Trec ≄ 38.5°C and ≄ 39.0°C, and change in muscle temperature, between VHOT, and TEMP and HOT, but not between TEMP and HOT. Each condition also elicited significantly increasing physiological strain, described by sweat rate, heart rate, physiological strain index, rating of perceived exertion and thermal sensation. Stepwise multiple regression reported rate of Trec increase and change in Trec to be predictors of increased eHsp72 concentration. Data suggests eHsp72 concentration increases once systemic temperature and sympathetic activity exceeds a minimum endogenous criteria elicited during VHOT conditions and is likely to be modulated by large, rapid changes in core temperature

    The six-minute walk test in community dwelling elderly: influence of health status.

    Get PDF
    BACKGROUND: The 6 minutes walk test (6MWT) is a useful assessment instrument for the exercise capacity of elderly persons. The impact of the health status on the 6MWT-distance in elderly, however, remains unclear, reducing its value in clinical settings. The objective of this study was to investigate to what extent the 6MWT-distance in community dwelling elderly is determined by health conditions. METHODS: One hundred and fifty-six community dwelling elderly people (53 male, 103 female) were assessed for health status and performed the 6MWT. After clinical evaluation, electrocardiography and laboratory examination participants were categorized into a stratified six-level classification system according to their health status, going from A (completely healthy) to D (signs of active disease at the moment of examination). RESULTS: The mean 6MWT-distance was 603 m (SD = 178). The 6MWT-distance decreased significantly with increasing age (ANOVA p = 0.0001) and with worsening health status (ANCOVA, corrected for age p < 0.001). A multiple linear regression model with health status, age and gender as independent variables explained 31% of the 6MWT-distance variability. Anthropometrical measures (stature, weight and BMI) did not significantly improve the prediction model. A significant relationship between 6MWT-distance and stature was only present in category A (completely healthy). CONCLUSIONS: Significant differences in 6MWT-distance are observed according to health status in community-dwelling elderly persons. The proposed health categorizing system for elderly people is able to distinguish persons with lower physical exercise capacity and can be useful when advising physical trainers for seniors

    Acceptability of prison-based take-home naloxone programmes among a cohort of incarcerated men with a history of regular injecting drug use

    Get PDF
    Background: Take-home naloxone (THN) programmes are an evidence-based opioid overdose prevention initiative. Elevated opioid overdose risk following prison release means release from custody provides an ideal opportunity for THN initiatives. However, whether Australian prisoners would utilise such programmes is unknown. We examined the acceptability of THN in a cohort of male prisoners with histories of regular injecting drug use (IDU) in Victoria, Australia. Methods: The sample comprised 380 men from the Prison and Transition Health (PATH) Cohort Study; all of whom reported regular IDU in the 6 months prior to incarceration. We asked four questions regarding THN during the pre-release baseline interview, including whether participants would be willing to participate in prison-based THN. We describe responses to these questions along with relationships between before- and during-incarceration factors and willingness to participate in THN training prior to release from prison. Results: Most participants (81%) reported willingness to undertake THN training prior to release. Most were willing to resuscitate a friend using THN if they were trained (94%) and to be revived by a trained peer (91%) using THN. More than 10 years since first injection (adjusted odds ratio [AOR] 2.22, 95%CI 1.03-4.77), having witnessed an opioid overdose in the last 5 years (AOR 2.53, 95%CI 1.32-4.82), having ever received alcohol or other drug treatment in prison (AOR 2.41, 95%CI 1.14-5.07) and injecting drugs during the current prison sentence (AOR 4.45, 95%CI 1.73-11.43) were significantly associated with increased odds of willingness to participate in a prison THN programme. Not specifying whether they had injected during their prison sentence (AOR 0.37, 95%CI 0.18-0.77) was associated with decreased odds of willingness to participate in a prison THN training. Conclusion: Our findings suggest that male prisoners in Victoria with a history of regular IDU are overwhelmingly willing to participate in THN training prior to release. Factors associated with willingness to participate in prison THN programmes offer insights to help support the implementation and uptake of THN programmes to reduce opioid-overdose deaths in the post-release period

    Using a human cardiovascular-respiratory model to characterize cardiac tamponade and pulsus paradoxus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiac tamponade is a condition whereby fluid accumulation in the pericardial sac surrounding the heart causes elevation and equilibration of pericardial and cardiac chamber pressures, reduced cardiac output, changes in hemodynamics, partial chamber collapse, pulsus paradoxus, and arterio-venous acid-base disparity. Our large-scale model of the human cardiovascular-respiratory system (H-CRS) is employed to study mechanisms underlying cardiac tamponade and pulsus paradoxus. The model integrates hemodynamics, whole-body gas exchange, and autonomic nervous system control to simulate pressure, volume, and blood flow.</p> <p>Methods</p> <p>We integrate a new pericardial model into our previously developed H-CRS model based on a fit to patient pressure data. Virtual experiments are designed to simulate pericardial effusion and study mechanisms of pulsus paradoxus, focusing particularly on the role of the interventricular septum. Model differential equations programmed in C are solved using a 5<sup>th</sup>-order Runge-Kutta numerical integration scheme. MATLAB is employed for waveform analysis.</p> <p>Results</p> <p>The H-CRS model simulates hemodynamic and respiratory changes associated with tamponade clinically. Our model predicts effects of effusion-generated pericardial constraint on chamber and septal mechanics, such as altered right atrial filling, delayed leftward septal motion, and prolonged left ventricular pre-ejection period, causing atrioventricular interaction and ventricular desynchronization. We demonstrate pericardial constraint to markedly accentuate normal ventricular interactions associated with respiratory effort, which we show to be the distinct mechanisms of pulsus paradoxus, namely, series and parallel ventricular interaction. Series ventricular interaction represents respiratory variation in right ventricular stroke volume carried over to the left ventricle via the pulmonary vasculature, whereas parallel interaction (via the septum and pericardium) is a result of competition for fixed filling space. We find that simulating active septal contraction is important in modeling ventricular interaction. The model predicts increased arterio-venous CO<sub>2 </sub>due to hypoperfusion, and we explore implications of respiratory pattern in tamponade.</p> <p>Conclusion</p> <p>Our modeling study of cardiac tamponade dissects the roles played by septal motion, atrioventricular and right-left ventricular interactions, pulmonary blood pooling, and the depth of respiration. The study fully describes the physiological basis of pulsus paradoxus. Our detailed analysis provides biophysically-based insights helpful for future experimental and clinical study of cardiac tamponade and related pericardial diseases.</p

    Do Mismatches between Pre- and Post-Natal Environments Influence Adult Physiological Functioning?

    Get PDF
    Purpose: Mismatches between pre- and post-natal environments have implications for disease in adulthood. However, less is known about how this mismatch can affect physiological systems more generally, especially at younger ages. We hypothesised that mismatches between pre- and post-natal environments, as measured by the measures of birthweight and adult leg length, would be associated with poorer biomarker levels across five key physiological systems in young adults. Methods: Data were collected from 923, 36 year-old respondents from the West of Scotland Twenty-07 Study. The biomarkers were: systolic blood pressure (sBP); forced expiratory volume (FEV1); glycated haemoglobin (HbA1c); glomerular filtration rate (eGFR); and gamma- glutamyltransferase (GGT). These biomarkers were regressed against pre-natal conditions (birthweight), post-natal conditions (leg length) and the interaction between pre- and post-natal measures. Sex, childhood socioeconomic position and adult lifestyle characteristics were adjusted for as potential effect modifiers and confounders, respectively. Results: There were no associations between birthweight and leg length and sBP, FEV1, HbA1c, or GGT. Higher birthweight and longer leg length were associated with better kidney function (eGFR). However, there was no evidence for mismatches between birthweight and leg length to be associated with worse sBP, FEV1, HbA1c, eGFR or GGT levels (P>0.05). Conclusions: Our hypothesis that early signs of physiological damage would be present in young adults given mismatches in childhood environments, as measured by growth markers, was not proven. This lack of association could be because age 36 is too young to identify significant trends for future health, or the associations simply not being present. © 2014 Robertson, Benzeval

    Joining the dots: Conditional pass and programmatic assessment enhances recognition of problems with professionalism and factors hampering student progress

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Programmatic assessment that looks across a whole year may contribute to better decisions compared with those made from isolated assessments alone. The aim of this study is to describe and evaluate a programmatic system to handle student assessment results that is aligned not only with learning and remediation, but also with defensibility. The key components are standards based assessments, use of "Conditional Pass", and regular progress meetings.</p> <p>Methods</p> <p>The new assessment system is described. The evaluation is based on years 4-6 of a 6-year medical course. The types of concerns staff had about students were clustered into themes alongside any interventions and outcomes for the students concerned. The likelihoods of passing the year according to type of problem were compared before and after phasing in of the new assessment system.</p> <p>Results</p> <p>The new system was phased in over four years. In the fourth year of implementation 701 students had 3539 assessment results, of which 4.1% were Conditional Pass. More in-depth analysis for 1516 results available from 447 students revealed the odds ratio (95% confidence intervals) for failure was highest for students with problems identified in more than one part of the course (18.8 (7.7-46.2) p < 0.0001) or with problems with professionalism (17.2 (9.1-33.3) p < 0.0001). The odds ratio for failure was lowest for problems with assignments (0.7 (0.1-5.2) NS). Compared with the previous system, more students failed the year under the new system on the basis of performance during the year (20 or 4.5% compared with four or 1.1% under the previous system (p < 0.01)).</p> <p>Conclusions</p> <p>The new system detects more students in difficulty and has resulted in less "failure to fail". The requirement to state conditions required to pass has contributed to a paper trail that should improve defensibility. Most importantly it has helped detect and act on some of the more difficult areas to assess such as professionalism.</p

    CDK-Mediated Regulation of Cell Functions via c-Jun Phosphorylation and AP-1 Activation

    Get PDF
    Cyclin-dependent kinases (CDKs) and their targets have been primarily associated with regulation of cell-cycle progression. Here we identify c-Jun, a transcription factor involved in the regulation of a broad spectrum of cellular functions, as a newly recognized CDK substrate. Using immune cells from mouse and human, and several complementary in vitro and in vivo approaches including dominant negative protein expression, pharmacologic inhibitors, kinase assays and CDK4 deficient cells, we demonstrate the ability of CDK4 to phosphorylate c-Jun. Additionally, the activity of AP-1, a ubiquitous transcription factor containing phosphorylated c-Jun as a subunit, was inhibited by abrogating CDK4. Surprisingly, the regulation of c-Jun phosphorylation by CDK4 occurred in non-dividing cells, indicating that this pathway is utilized for cell functions that are independent of proliferation. Our studies identify a new substrate for CDK4 and suggest a mechanism by which CDKs can regulate multiple cellular activation functions, not all of which are directly associated with cell cycle progression. These findings point to additional roles of CDKs in cell signaling and reveal potential implications for therapeutic manipulations of this kinase pathway

    Old lineage on an old island : Pixibinthus, a new cricket genus endemic to New Caledonia shed light on gryllid diversification in a hotspot of biodiversity

    Get PDF
    Few studies have focused on the early colonization of New Caledonia by insects, after the re-emergence of the main island, 37 Myr ago. Here we investigate the mode and tempo of evolution of a new endemic cricket genus, Pixibinthus, recently discovered in southern New Caledonia. First we formally describe this new monotypic genus found exclusively in the open shrubby vegetation on metalliferous soils, named 'maquis minier', unique to New Caledonia. We then reconstruct a dated molecular phylogeny based on five mitochondrial and four nuclear loci in order to establish relationships of Pixibinthus within Eneopterinae crickets. Pixibinthus is recovered as thesister clade of the endemic genus Agnotecous, mostly rainforest-dwellers. Dating results show that the island colonization by their common ancestor occurred around 34.7 Myr, shortly after New Caledonia re-emergence. Pixibinthus and Agnotecous are then one of the oldest insect lineages documented so far for New Caledonia. This discovery highlights for the first time two clear-cut ecological specializations between sister clades, as Agnotecous is mainly found in rainforests with 19 species, whereas Pixibinthus is found in open habitats with a single documented species. The preference of Pixibinthus for open habitats and of Agnotecous for forest habitats nicely fits an acoustic specialization, either explained by differences in body size or in acoustic properties of their respective habitats. We hypothesize that landscape dynamics, linked to major past climatic events and recent change in fire regimes are possible causes for both present-day low diversity and rarity in genus Pixibinthus. The unique evolutionary history of this old New Caledonian lineage stresses the importance to increase our knowledge on the faunal biodiversity of 'maquis minier', in order to better understand the origin and past dynamics of New Caledonian biota
    • 

    corecore