250 research outputs found

    Ultrastructural defects in stereocilia and tectorial membrane in aging mouse and human cochleae

    Get PDF
    The aging cochlea is subjected to a number of pathological changes to play a role in the onset of age-related hearing loss (ARHL). Although ARHL has often been thought of as the result of the loss of hair cells, it is in fact a disorder with a complex etiology, arising from the changes to both the organ of Corti and its supporting structures. In this study, we examine two aging pathologies that have not been studied in detail despite their apparent prevalence; the fusion, elongation, and engulfment of cochlear inner hair cell stereocilia, and the changes that occur to the tectorial membrane (TM), a structure overlying the organ of Corti that modulates its physical properties in response to sound. Our work demonstrates that similar pathological changes occur in these two structures in the aging cochleae of both mice and humans, examines the ultrastructural changes that underlie stereocilial fusion, and identifies the lost TM components that lead to changes in membrane structure. We place these changes into the context of the wider pathology of the aging cochlea, and identify how they may be important in particular for understanding the more subtle hearing pathologies that precede auditory threshold loss in ARHL

    The IĸB protein BCL3 controls osteogenesis and bone health.

    Get PDF
    OBJECTIVE: IĸB protein B-cell lymphoma 3-encoded protein (BCL3) is a regulator of the NF-κB family of transcription factors. NF-κB signalling fundamentally influences the fate of bone-forming osteoblasts and bone-resorbing osteoclasts, but the role of BCL3 in bone biology has not been investigated. The objective of this study was to evaluate BCL3 in skeletal development, maintenance and osteoarthritic pathology. METHODS: To assess the contribution of BCL3 to skeletal homeostasis, neonatal mice (n = 6-14) lacking BCL3 (Bcl3-/- ) and WT controls were characterised for bone phenotype and density. To reveal the contribution to bone phenotype by the osteoblast compartment in Bcl3-/- mice, transcriptomic analysis of early osteogenic differentiation and cellular function (n = 3-7) were assessed. Osteoclast differentiation and function in Bcl3-/- mice (n = 3-5) was assessed. Adult 20-week Bcl3-/- and WT mice bone phenotype, strength and turnover were assessed. A destabilisation of the medial meniscus (DMM) model of osteoarthritic ostephytogenesis was utilised to understand adult bone formation in Bcl3-/- mice (n = 11-13). RESULTS: Evaluation of Bcl3-/- mice revealed congenitally increased bone density, long bone dwarfism, increased bone biomechanical strength and altered bone turnover. Molecular and cellular characterisation of mesenchymal precursors showed that Bcl3-/- cells display an accelerated osteogenic transcriptional profile that leads to enhanced differentiation into osteoblasts with increased functional activity; which could be reversed with a mimetic peptide. In a model of osteoarthritis-induced osteophytogenesis, Bcl3-/- mice exhibit decreased pathological osteophyte formation (P < 0.05). CONCLUSION: Cumulatively, these findings demonstrate that BCL3 controls developmental mineralisation to enable appropriate bone formation, whilst in a pathological setting it contributes to skeletal pathology

    Temporal trends in mode, site and stage of presentation with the introduction of colorectal cancer screening: a decade of experience from the West of Scotland

    Get PDF
    background:  Population colorectal cancer screening programmes have been introduced to reduce cancer-specific mortality through the detection of early-stage disease. The present study aimed to examine the impact of screening introduction in the West of Scotland. methods:  Data on all patients with a diagnosis of colorectal cancer between January 2003 and December 2012 were extracted from a prospectively maintained regional audit database. Changes in mode, site and stage of presentation before, during and after screening introduction were examined. results:  In a population of 2.4 million, over a 10-year period, 14 487 incident cases of colorectal cancer were noted. Of these, 7827 (54%) were males and 7727 (53%) were socioeconomically deprived. In the postscreening era, 18% were diagnosed via the screening programme. There was a reduction in both emergency presentation (20% prescreening vs 13% postscreening, P0.001) and the proportion of rectal cancers (34% prescreening vs 31% pos-screening, P0.001) over the timeframe. Within non-metastatic disease, an increase in the proportion of stage I tumours at diagnosis was noted (17% prescreening vs 28% postscreening, P0.001). conclusions:  Within non-metastatic disease, a shift towards earlier stage at diagnosis has accompanied the introduction of a national screening programme. Such a change should lead to improved outcomes in patients with colorectal cancer

    Mutations in protocadherin 15 and cadherin 23 affect tip links and mechanotransduction in mammalian sensory hair cells

    Get PDF
    Immunocytochemical studies have shown that protocadherin-15 (PCDH15) and cadherin-23 (CDH23) are associated with tip links, structures thought to gate the mechanotransducer channels of hair cells in the sensory epithelia of the inner ear. The present report describes functional and structural analyses of hair cells from Pcdh15av3J (av3J), Pcdh15av6J (av6J) and Cdh23v2J (v2J) mice. The av3J and v2J mice carry point mutations that are predicted to introduce premature stop codons in the transcripts for Pcdh15 and Cdh23, respectively, and av6J mice have an in-frame deletion predicted to remove most of the 9th cadherin ectodomain from PCDH15. Severe disruption of hair-bundle morphology is observed throughout the early-postnatal cochlea in av3J/av3J and v2J/v2J mice. In contrast, only mild-to-moderate bundle disruption is evident in the av6J/av6J mice. Hair cells from av3J/av3J mice are unaffected by aminoglycosides and fail to load with [3H]-gentamicin or FM1-43, compounds that permeate the hair cell's mechanotransducer channels. In contrast, hair cells from av6J/av6J mice load with both FM1-43 and [3H]-gentamicin, and are aminoglycoside sensitive. Transducer currents can be recorded from hair cells of all three mutants but are reduced in amplitude in all mutants and have abnormal directional sensitivity in the av3J/av3J and v2J/v2J mutants. Scanning electron microscopy of early postnatal cochlear hair cells reveals tip-link like links in av6J/av6J mice, substantially reduced numbers of links in the av3J/av3J mice and virtually none in the v2J/v2J mice. Analysis of mature vestibular hair bundles reveals an absence of tip links in the av3J/av3J and v2J/v2J mice and a reduction in av6J/av6J mice. These results therefore provide genetic evidence consistent with PCDH15 and CDH23 being part of the tip-link complex and necessary for normal mechanotransduction

    Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE

    Get PDF
    Ultra high fields (7T and above) allow functional imaging with high contrast-to-noise ratios and improved spatial resolution. This, along with improved hardware and imaging techniques, allow investigating columnar and laminar functional responses. Using gradient-echo (GE) (T2* weighted) based sequences, layer specific responses have been recorded from human (and animal) primary visual areas. However, their increased sensitivity to large surface veins potentially clouds detecting and interpreting layer specific responses. Conversely, spin-echo (SE) (T2 weighted) sequences are less sensitive to large veins and have been used to map cortical columns in humans. T2 weighted 3D GRASE with inner volume selection provides high isotropic resolution over extended volumes, overcoming some of the many technical limitations of conventional 2D SE-EPI, whereby making layer specific investigations feasible. Further, the demonstration of columnar level specificity with 3D GRASE, despite contributions from both stimulated echoes and conventional T2 contrast, has made it an attractive alternative over 2D SE-EPI. Here, we assess the spatial specificity of cortical depth dependent 3D GRASE functional responses in human V1 and hMT by comparing it to GE responses. In doing so we demonstrate that 3D GRASE is less sensitive to contributions from large veins in superficial layers, while showing increased specificity (functional tuning) throughout the cortex compared to GE

    Systemic aminoglycosides are trafficked via endolymph into cochlear hair cells

    Get PDF
    Aminoglycoside antibiotics rapidly enter and kill cochlear hair cells via apical mechanoelectrical transduction (MET) channels in vitro. In vivo, it remains unknown whether systemically-administered aminoglycosides cross the blood-labyrinth barrier into endolymph and enter hair cells. Here we show, for the first time, that systemic aminoglycosides are trafficked across the blood-endolymph barrier and preferentially enter hair cells across their apical membranes. This trafficking route is predominant compared to uptake via hair cell basolateral membranes during perilymph infusion

    Reduction of elasmobranch by-catch in the hake semipelagic near-bottom longline fishery in the Algarve (Southern Portugal)

    Get PDF
    Elasmobranch fish, particularly deep-sea sharks, are the most important component of the by-catch of the hake semipelagic near-bottom 'pedra-e-bola' longline fishery in the Algarve (South Portugal) and most of these fish are discarded. The effects of the removal of the lower hooks were evaluated, in terms of target and by-catch reductions, by quantifying the catches of each hook relative to the distance from the bottom. The analysis showed that most European hake (Merluccius merluccius), the target species of this fishery, were caught in the middle range of the hooks, with very few individuals caught near the bottom, whereas for sharks the situation was the opposite, with most hooked near the bottom. The removal of the lower three pairs of hooks would result in a small reduction in the catch of the target species, but a much more significant reduction in elasmobranch by-catch. In the specific case of the blackmouth catshark (Galeus melastomus), discard mortality would be further minimized due to the fact that the lower hooks capture significantly smaller animals that are always discarded compared with hooks that are more distant from the bottom

    An ENU-induced mutation of miR-96 associated with progressive hearing loss in mice.

    Get PDF
    Progressive hearing loss is common in the human population, but little is known about the molecular basis. We report a new N-ethyl-N-nitrosurea (ENU)-induced mouse mutant, diminuendo, with a single base change in the seed region of Mirn96. Heterozygotes show progressive loss of hearing and hair cell anomalies, whereas homozygotes have no cochlear responses. Most microRNAs are believed to downregulate target genes by binding to specific sites on their mRNAs, so mutation of the seed should lead to target gene upregulation. Microarray analysis revealed 96 transcripts with significantly altered expression in homozygotes; notably, Slc26a5, Ocm, Gfi1, Ptprq and Pitpnm1 were downregulated. Hypergeometric P-value analysis showed that hundreds of genes were upregulated in mutants. Different genes, with target sites complementary to the mutant seed, were downregulated. This is the first microRNA found associated with deafness, and diminuendo represents a model for understanding and potentially moderating progressive hair cell degeneration in hearing loss more generally

    The motivational impact of wearable healthy lifestyle technologies: a self-determination perspective on Fitbits with adolescents

    Get PDF
    Background: Considerable numbers of young people are not meeting physical activity guidelines. Wearable fitness devices can provide opportunities for physical activity promotion. Purpose: The aim of the study was to explore whether wearable healthy lifestyle technologies impacted on adolescents’ (13- to 14-year-olds) motivation for physical activity. Methods: The study was a mixed method sequential design. Participants were 84 adolescents (44 girls, 40 boys) from 6 physical education classes. Pupils were issued with a Fitbit to wear for 8 weeks and completed pre-/posttest questionnaires that assessed motivational regulation and psychological need satisfaction. Adolescents also engaged in focus group interviews after wearing the Fitbit for 8 weeks. Quantitative data were analyzed using a repeated measures multivariate analysis of variance (MANOVA) to explore differences between gender and time. Qualitative data analysis was conducted deductively using self-determination theory. Results: The quantitative findings identified significant reductions in need satisfaction and autonomous motivation and significant increases in amotivation after 8 weeks. Qualitative evidence suggested short-term increases in motivation through feelings of competition, guilt, and internal pressure. Discussion: Findings suggest that healthy lifestyle technology may have negative motivational consequences. Translation to Health Education Practice: Certified Health Education Specialists should support young people to personalize health targets in order to critically engage with normalized health targets

    Expansion of oxygen minimum zones may reduce available habitat for tropical pelagic fishes

    Get PDF
    Climate model predictions1, 2 and observations3, 4 reveal regional declines in oceanic dissolved oxygen, which are probably influenced by global warming5. Studies indicate ongoing dissolved oxygen depletion and vertical expansion of the oxygen minimum zone (OMZ) in the tropical northeast Atlantic Ocean6, 7. OMZ shoaling may restrict the usable habitat of billfishes and tunas to a narrow surface layer8, 9. We report a decrease in the upper ocean layer exceeding 3.5 ml l−1 dissolved oxygen at a rate of ≤1 m yr−1 in the tropical northeast Atlantic (0–25° N, 12–30° W), amounting to an annual habitat loss of ~5.95×1013 m3, or 15% for the period 1960–2010. Habitat compression and associated potential habitat loss was validated using electronic tagging data from 47 blue marlin. This phenomenon increases vulnerability to surface fishing gear for billfishes and tunas8, 9, and may be associated with a 10–50% worldwide decline of pelagic predator diversity10. Further expansion of the Atlantic OMZ along with overfishing may threaten the sustainability of these valuable pelagic fisheries and marine ecosystems
    • …
    corecore