41 research outputs found

    IL-1β Stimulates COX-2 Dependent PGE2 Synthesis and CGRP Release in Rat Trigeminal Ganglia Cells

    Get PDF
    OBJECTIVE: Pro-inflammatory cytokines like Interleukin-1 beta (IL-1β) have been implicated in the pathophysiology of migraine and inflammatory pain. The trigeminal ganglion and calcitonin gene-related peptide (CGRP) are crucial components in the pathophysiology of primary headaches. 5-HT1B/D receptor agonists, which reduce CGRP release, and cyclooxygenase (COX) inhibitors can abort trigeminally mediated pain. However, the cellular source of COX and the interplay between COX and CGRP within the trigeminal ganglion have not been clearly identified. METHODS AND RESULTS: 1. We used primary cultured rat trigeminal ganglia cells to assess whether IL-1β can induce the expression of COX-2 and which cells express COX-2. Stimulation with IL-1β caused a dose and time dependent induction of COX-2 but not COX-1 mRNA. Immunohistochemistry revealed expression of COX-2 protein in neuronal and glial cells. 2. Functional significance was demonstrated by prostaglandin E2 (PGE(2)) release 4 hours after stimulation with IL-1β, which could be aborted by a selective COX-2 (parecoxib) and a non-selective COX-inhibitor (indomethacin). 3. Induction of CGRP release, indicating functional neuronal activation, was seen 1 hour after PGE(2) and 24 hours after IL-1β stimulation. Immunohistochemistry showed trigeminal neurons as the source of CGRP. IL-1β induced CGRP release was blocked by parecoxib and indomethacin, but the 5-HT1B/D receptor agonist sumatriptan had no effect. CONCLUSION: We identified a COX-2 dependent pathway of cytokine induced CGRP release in trigeminal ganglia neurons that is not affected by 5-HT1B/D receptor activation. Activation of neuronal and glial cells in the trigeminal ganglion by IL-β leads to an elevated expression of COX-2 in these cells. Newly synthesized PGE(2) (by COX-2) in turn activates trigeminal neurons to release CGRP. These findings support a glia-neuron interaction in the trigeminal ganglion and demonstrate a sequential link between COX-2 and CGRP. The results could help to explain the mechanism of action of COX-2 inhibitors in migraine

    Pharmacological Properties and Biological Functions of the GPR17 Receptor, a Potential Target for Neuro-Regenerative Medicine

    Get PDF
    In 2006, cells heterologously expressing the "orphan" receptor GPR17 were shown to acquire responses to both uracil nucleotides and cysteinyl-leukotrienes, two families of signaling molecules accumulating in brain or heart as a result of hypoxic/traumatic injuries. In subsequent years, evidence of GPR17 key role in oligodendrogenesis and myelination has highlighted it as a "model receptor" for new therapies in demyelinating and neurodegenerative diseases. The apparently contrasting evidence in the literature about the role of GPR17 in promoting or inhibiting myelination can be due to its transient expression in the intermediate stages of differentiation, exerting a pro-differentiating function in early oligodendrocyte precursor cells (OPCs), and an inhibitory role in late stage maturing cells. Meanwhile, several papers extended the initial data on GPR17 pharmacology, highlighting a "promiscuous" behavior of this receptor; indeed, GPR17 is able to respond to other emergency signals like oxysterols or the pro-inflammatory cytokine SDF-1, underlying GPR17 ability to adapt its responses to changes of the surrounding extracellular milieu, including damage conditions. Here, we analyze the available literature on GPR17, in an attempt to summarize its emerging biological roles and pharmacological properties

    THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview.

    Get PDF
    The Concise Guide to PHARMACOLOGY 2017/18 is the third in this series of biennial publications. This version provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate

    Adenosine Signaling in Glioma Cells

    No full text
    Purines and pyrimidines are fundamental signaling molecules in controlling the survival and proliferation of astrocytes, as well as in mediating cell-to-cell communication between glial cells and neurons in the healthy brain. The malignant transformation of astrocytes towards progressively more aggressive brain tumours (from astrocytoma to anaplastic glioblastoma) leads to modifications in both the survival and cell death pathways which overall confer a growth advantage to malignant cells and resistance to many cytotoxic stimuli. It has been demonstrated, however, that, in astrocytomas, several purinergic (in particular adenosinergic) pathways controlling cell survival and death are still effective and, in some cases, even enhanced, providing invaluable targets for purine-based chemotherapy, that still represents an appropriate pharmacological approach to brain tumours. In this chapter, the current knowledge on both receptor-mediated and receptor-independent adenosine pathways in astrocytomas will be reviewed, with a particular emphasis on the most promising targets which could be translated from in vitro studies to in vivo pharmacology. Additionally, we have included new original data from our laboratory demonstrating a key involvement of MAP kinases in the cytostastic and cytotoxic effects exerted by an adenosine analogue, 2-CdA, which with the name of Cladribine is already clinically utilized in haematological malignancies. Here we show that 2-CdA can activate multiple intracellular pathways leading to cell cycle block and cell death by apoptosis of a human astrocytoma cell line that bears several pro-survival genetic mutations. Although in vivo data are still lacking, our results suggest that adenosine analogues could therefore be exploited to overcome resistance to chemotherapy of brain tumours
    corecore