118 research outputs found

    Analytical methods and simulation models to assess innovative operational measures and technologies for rail port terminals: the case of Valencia Principe Felipe terminal

    Get PDF
    The topic of freight transport by rail is a complex theme and, in recent years, a main issue of European policy. The legislation evolution and the White Paper 2011 have demonstrated the European intention to re-launch this sector. The challenge is to promote the intermodal transport system to the detriment of road freight transport. In this context intermodal freight terminals, play a primary role for the supply chain, they are the connection point between the various transport nodes and the nodal points where the freight are handled, stored and transferred between different modes to final customer. To achieve the purpose, it is strengthen the improvement of existing intermodal freight terminals and the development of innovative intermodal freight terminals towards higher performance (ERRAC, 2012). Many terminal performances improvements have been proposed and sometime experimented. They are normally basing on combinations of operational measures and innovative technologies (e.g. automatic horizontal and parallel storage and handling, automated gate and sensors for tracking systems data exchange) tested in various terminals, with often-contradictory results. The research work described in this paper (developed within the Capacity4Rail EU project) focusses on the assessment of effects that these innovations can have in the intermodal freight terminals combined in various alternative consistent effective scenarios. The methodological framework setup to assess these innovations is basing on a combination of analytical methods based on sequential algorithms and discrete events simulation models. The output of this assessment method are key performance indicators (KPIs) selected according to terminals typologies and related to different aspects (e.g. management, operation and organization). The present paper illustrates the application of the methodological framework, tuned on the operation of various intermodal terminals, for the validation on today operation and the assessment of possible future scenarios to the case study of the Principe Felipe sea-rail terminal in Valencia

    Fire Management on Container Ships. New Strategies and Technologies

    Get PDF
    Design and construction of container ships follow consolidated requirements, with standard consideration of fire management. Indeed, cargo fires can have important consequence on crewmembers and cargoes, as well as impacting coastal zone and marine environment. Innovative strategies include prevention of events and mitigation of consequences. Digital solutions, providing with situational pictures onboard and around the vessel are fundamental for new fire management solutions, seamless and integrated in o the vessel IT infrastructure, according to IMO regulations and the recent EMSA CARGOSAFE Report. The assessment of these solutions requires theoretical evaluation, validation activities in simulated environment and demonstration activities in real environments, with use cases to prove feasibility and benefits. This paper, after a review of traditional preventing and mitigating solutions against fire and an analysis of container ships fires, proposes applicable innovative technologies and operational measures, emerging problems for their potential implementation and requirements for virtual and real tests design

    Using Pathway Signatures as Means of Identifying Similarities among Microarray Experiments

    Get PDF
    Widespread use of microarrays has generated large amounts of data, the interrogation of the public microarray repositories, identifying similarities between microarray experiments is now one of the major challenges. Approaches using defined group of genes, such as pathways and cellular networks (pathway analysis), have been proposed to improve the interpretation of microarray experiments. We propose a novel method to compare microarray experiments at the pathway level, this method consists of two steps: first, generate pathway signatures, a set of descriptors recapitulating the biologically meaningful pathways related to some clinical/biological variable of interest, second, use these signatures to interrogate microarray databases. We demonstrate that our approach provides more reliable results than with gene-based approaches. While gene-based approaches tend to suffer from bias generated by the analytical procedures employed, our pathway based method successfully groups together similar samples, independently of the experimental design. The results presented are potentially of great interest to improve the ability to query and compare experiments in public repositories of microarray data. As a matter of fact, this method can be used to retrieve data from public microarray databases and perform comparisons at the pathway level

    MScs in railway transport and logistics: State of the art and perspectives for a new programme

    Get PDF
    The objective of this paper is to discuss results obtained from a structured survey on MScs in railway transport and logistics, which has been conducted within the RiFLE project. RiFLE stands for Rail Freight and Logistics Curriculum Development and was funded by the Erasmus (LLL) programme of the European Commission. The aim of RiFLE was to develop master courses to be delivered in English language by the participating institutions as separate but shared programmes in their universities. The approach was to analyse, enhance and adapt existing courses already offered by the participating institutions within a modern rail freight and logistics environment. Therefore, the goal of the survey was to define the state of the art of the current offer of MSc 'railway transport and logistics' related courses across the European and non-European countries. For the collection of data, a questionnaire has been developed. 'SuperSurvey' was used to approach intended respondents. SuperSurvey is a user-friendly online platform for collecting information using questionnaires. The target group included professors, lecturers and masters programmes managers in transport and logistics. Existing relevant programmes from European and other universities and institutions for higher education have been collected and analysed. Information collected helped to define a comprehensive framework of transport and logistics curricula, courses and programmes and to understand different levels of learning and structures of higher education such as single modules, bachelor courses, master courses, as well as mobility programmes and patterns. Keywords: Rail freight and logistics, higher education, innovation, survey, state of the art

    Development of a contactless sensor system to support rail track geometry on-board monitoring

    Get PDF
    This paper is focused on the ongoing research, within a work package of the Shift2Rail project Assets4Rail, related to the development of an on-board contactless sensor system able to measure the wheel's transversal position in relation to the rail in order to support track geometry measurements. In particular, this research work focuses on developing a sensor system to support track geometry monitoring performed by the master system under development in other Shift2Rail projects. The aim is to develop a sensor system to detect the relative transversal position between the wheelset and the rail, suitable for the use on commercial (in-service) vehicles. In fact, a possible track geometry monitoring system alternative to the sophisticated and expensive optical/inertial systems and suitable for use on commercial vehicles, could be based on the measurement of accelerations. However, some parameters of the track geometry, such as lateral alignment, are extremely difficult to determine through the measurement of accelerations. In this case, it is necessary to find an innovative sensor system able to determine the wheel's transversal position in relation to the rail. For this reason, this project intends to focus on innovative systems that allow the detection of the wheel-track position by avoiding the optical/inertial systems already used on diagnostic trains. After a state-of-the-art overview on the potentially applicable technologies for the sensor system to be developed, a corresponding analytical tool for comparison of contactless sensors to choose the most suitable technology has been developed and two candidate technologies (stereo and thermal cameras) have been selected and assessed by means of a test platform in the facilities laboratory of VGTU (Vilnius Tech). This work will be the basis for developing a concept design of the sensor system together with a montage solution, which will be finally tested on a vehicle in real operation conditions

    Track geometry monitoring by an on-board computer-vision-based sensor system

    Get PDF
    This article illustrates some outcomes of the EU project Assets4Rail, founded within the Shift2Rail Joint Undertaking. Nowadays, Track recording vehicles (TRV) are equipped with laser/optical systems with inertial units to monitor track geometry (TG). Dedicated trains and sophisticated measurement equipment are difficult, costly to acquire and maintain. So the time interval between two TRV recordings of the TG on the same line section cannot be too close (twice per month to twice per year). Recently, infrastructure managers have been more interested in using commercial trains to monitor track condition in a cost-effective manner. TRVs' expensive and constantly maintained optical systems make them unsuitable for commercial fleets. On-board sensor systems based on indirect measurements such as accelerations have been developed in various studies. While detecting the vertical irregularity is a straightforward method by doubling the recorded acceleration, it is yet an unsolved issue for lateral irregularities due to the complicated relative wheel-rail motion. The proposed system combines wheel-rail transversal relative position data with on-board lateral acceleration sensors to detect lateral alignment issues. It includes a functional prototype of an on-board computer vision sensor capable of monitoring Lateral displacement for TG measurements. This eliminates measurement errors due to wheelset transverse displacements relative to the track, which is essential for calculating lateral alignment. The sensor system prototype was tested in Italy at 100 km/h on the Aldebaran 2.0 TRV of RFI, the main Italian Infrastructure Manager. It was found that the estimated lateral displacement well corresponds to the lateral alignment acquired by the Aldebaran 2.0 commercial TG inspection equipment. Moreover, due to the lack of measurement of the acceleration on board the Aldebaran 2.0 TRV, a Simpack® simulation provide with axle box acceleration values, to evaluate the correlation between them, LDWR and track alignment issues

    Chest computed tomography of suspected COVID-19 pneumonia in the Emergency Department : comparative analysis between patients with different vaccination status

    Get PDF
    Purpose: To identify differences in chest computed tomography (CT) of the symptomatic coronavirus disease 2019 (COVID-19) population according to the patients' severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination status (non-vaccinated, vaccinated with incomplete or complete vaccination cycle). Material and methods: CT examinations performed in the Emergency Department (ED) in May-November 2021 for suspected COVID-19 pneumonia with a positive SARS-CoV-2 test were retrospectively included. Personal data were compared for vaccination status. One 13-year experienced radiologist and two 4th-year radiology residents independently evaluated chest CT scans according to CO-RADS and ACR COVID classifications. In possible COVID-19 pneumonia cases, defined as CO-RADS 3 to 5 (ACR indeterminate and typical) by each reader, high involvement CT score (≥ 25%) and CT patterns (presence of ground glass opacities, consolidations, crazy paving areas) were compared for vaccination status. Results: 184 patients with known vaccination status were included in the analysis: 111 non-vaccinated (60%) for SARS-CoV-2 infection, 21 (11%) with an incomplete vaccination cycle, and 52 (28%) with a complete vaccination cycle (6 different vaccine types). Multivariate logistic regression showed that the only factor predicting the absence of pneumonia (CO-RADS 1 and ACR negative cases) for the 3 readers was a complete vaccination cycle (OR = 12.8-13.1 compared to non-vaccinated patients, p ≤ 0.032). Neither CT score nor CT patterns of possible COVID-19 pneumonia showed any statistically significant correlation with vaccination status for the 3 readers. Conclusions: Symptomatic SARS-CoV-2-infected patients with a complete vaccination cycle had much higher odds of showing a negative CT chest examination in ED compared to non-vaccinated patients. Neither CT involvement nor CT patterns of interstitial pneumonia showed differences across different vaccination status

    Deep Learning based Virtual Point Tracking for Real-Time Target-less Dynamic Displacement Measurement in Railway Applications

    Full text link
    In the application of computer-vision based displacement measurement, an optical target is usually required to prove the reference. In the case that the optical target cannot be attached to the measuring objective, edge detection, feature matching and template matching are the most common approaches in target-less photogrammetry. However, their performance significantly relies on parameter settings. This becomes problematic in dynamic scenes where complicated background texture exists and varies over time. To tackle this issue, we propose virtual point tracking for real-time target-less dynamic displacement measurement, incorporating deep learning techniques and domain knowledge. Our approach consists of three steps: 1) automatic calibration for detection of region of interest; 2) virtual point detection for each video frame using deep convolutional neural network; 3) domain-knowledge based rule engine for point tracking in adjacent frames. The proposed approach can be executed on an edge computer in a real-time manner (i.e. over 30 frames per second). We demonstrate our approach for a railway application, where the lateral displacement of the wheel on the rail is measured during operation. We also implement an algorithm using template matching and line detection as the baseline for comparison. The numerical experiments have been performed to evaluate the performance and the latency of our approach in the harsh railway environment with noisy and varying backgrounds

    Analytical methods and simulation models to assess innovative operational measures and technologies for rail port terminals: the case of Valencia Principe Felipe terminal

    Full text link
    [EN] The topic of freight transport by rail is a complex theme and, in recent years, a main issue of European policy. The legislation evolution and the White Paper 2011 have demonstrated the European intention to re-launch this sector. The challenge is to promote the intermodal transport system to the detriment of road freight transport. In this context intermodal freight terminals, play a primary role for the supply chain, they are the connection point between the various transport nodes and the nodal points where the freight are handled, stored and transferred between different modes to final customer. To achieve the purpose, it is strengthen the improvement of existing intermodal freight terminals and the development of innovative intermodal freight terminals towards higher performance (ERRAC, 2012). Many terminal performances improvements have been proposed and sometime experimented. They are normally basing on combinations of operational measures and innovative technologies (e.g. automatic horizontal and parallel storage and handling, automated gate and sensors for tracking systems data exchange) tested in various terminals, with often-contradictory results. The research work described in this paper (developed within the Capacity4Rail EU project) focusses on the assessment of effects that these innovations can have in the intermodal freight terminals combined in various alternative consistent effective scenarios. The methodological framework setup to assess these innovations is basing on a combination of analytical methods based on sequential algorithms and discrete events simulation models. The output of this assessment method are key performance indicators (KPIs) selected according to terminals typologies and related to different aspects (e.g. management, operation and organization). The present paper illustrates the application of the methodological framework, tuned on the operation of various intermodal terminals, for the validation on today operation and the assessment of possible future scenarios to the case study of the Principe Felipe sea-rail terminal in Valencia.Capodilupo, L.; Furió Pruñonosa, S.; Marinacci, C.; Ricci, S.; Rizzetto, L. (2016). Analytical methods and simulation models to assess innovative operational measures and technologies for rail port terminals: the case of Valencia Principe Felipe terminal. En XII Congreso de ingeniería del transporte. 7, 8 y 9 de Junio, Valencia (España). Editorial Universitat Politècnica de València. 1445-1455. https://doi.org/10.4995/CIT2016.2015.3398OCS1445145

    The Biological Connection Markup Language: a SBGN-compliant format for visualization, filtering and analysis of biological pathways

    Get PDF
    Motivation: Many models and analysis of signaling pathways have been proposed. However, neither of them takes into account that a biological pathway is not a fixed system, but instead it depends on the organism, tissue and cell type as well as on physiological, pathological and experimental conditions
    corecore