497 research outputs found
Nucleotide sequence of the aliphatic amidase regulator gene (amiR) of Pseudomonas aeruginosa
AbstractThe nucleotide sequence of a 1001 bp ClaI/XhoI DNA fragment encoding the amidase regulator gene (amiR) from Pseudomonas aeruginosa has been determined. The sequence derives from strain PAC433, a constitutive high expressing amidase mutant, and contains two overlapping open reading frames. Analysis of the sequence has identified one of the reading frames as amiR. The gene encodes a 196 amino acid polypeptide which shows a strong bias towards codons with G or C in the third position. The amiR gene shows no sequence homology with other bacterial regulator proteins
Recommended from our members
SAF-BRET-FMEF: a developmental LMR fuel cycle facility
The SAF-BRET-FMEF complex represents a versatile fuel cycle facility for processing LMR fuel. While originally conceived for processing FFTF and CRBRP fuel, it represents a facility where LMR fuel from the first generation of innovative LMRs could be processed. The cost of transporting fuel from the LMR to the Hanford site would have to be assessed when the LMR site is identified. The throughput of BRET was set at 15 MTHM/yr during conceptual design of the facility, a rate which was adequate to process all of the fuel from FFTF and fuel and blanket material from CRBRP. The design is currently being reevaluated to see if BRET could be expanded to approx.35 MTHM/yr to process fuel and blanket material from approx.1300 MWe generating capacity of the innovative LMRs. This expanded throughput is possible by designing the equipment for an instantaneous throughput of 0.2 MTHM/d, and by selected additional modifications to the facility (e.g., expansion of shipping and receiving area, and addition of a second entry tunnel transporter), and by the fact that the LMR fuel assemblies contain more fuel than the FFTF assemblies (therefore, fewer assemblies must be handled for the same throughput). The estimated cost of such an expansion is also being assessed. As stated previously, the throughput of SAF and Fuel Assembly could be made to support typical LMRs at little additional cost. The throughput could be increased to support the fuel fabrication requirements for 1300 MWe generating capacity of the innovative LMRs. This added capacity may be achieved by increasing the number of operating shifts, and is affected by variables such as fuel design, fuel enrichment, and plutonium isotopic composition
Professionalism, golf coaching and a master of science degree
A distinction can be made between 'professionalisation', which is concerned with occupational status and standing, and 'professionalism,' which refers to matters of quality and standards of practice (especially specialized knowledge, ethics and altruism). The purpose of this stimulus article is to present key features of contemporary medical professionalism as a basis for critically reflecting on discourse associated with Tiger Woods' current coach, Sean Foley. It is suggested that that provision of a Master of Science degree in golf teaching/coaching would facilitate the development of 'professionalism' in golf coaches
Optical investigation of the charge-density-wave phase transitions in
We have measured the optical reflectivity of the quasi
one-dimensional conductor from the far infrared up to the
ultraviolet between 10 and 300 using light polarized along and normal to
the chain axis. We find a depletion of the optical conductivity with decreasing
temperature for both polarizations in the mid to far-infrared region. This
leads to a redistribution of spectral weight from low to high energies due to
partial gapping of the Fermi surface below the charge-density-wave transitions
at 145 K and 59 K. We deduce the bulk magnitudes of the CDW gaps and discuss
the scattering of ungapped free charge carriers and the role of fluctuations
effects
Effect of stress-triaxiality on void growth in dynamic fracture of metals: a molecular dynamics study
The effect of stress-triaxiality on growth of a void in a three dimensional
single-crystal face-centered-cubic (FCC) lattice has been studied. Molecular
dynamics (MD) simulations using an embedded-atom (EAM) potential for copper
have been performed at room temperature and using strain controlling with high
strain rates ranging from 10^7/sec to 10^10/sec. Strain-rates of these
magnitudes can be studied experimentally, e.g. using shock waves induced by
laser ablation. Void growth has been simulated in three different conditions,
namely uniaxial, biaxial, and triaxial expansion. The response of the system in
the three cases have been compared in terms of the void growth rate, the
detailed void shape evolution, and the stress-strain behavior including the
development of plastic strain. Also macroscopic observables as plastic work and
porosity have been computed from the atomistic level. The stress thresholds for
void growth are found to be comparable with spall strength values determined by
dynamic fracture experiments. The conventional macroscopic assumption that the
mean plastic strain results from the growth of the void is validated. The
evolution of the system in the uniaxial case is found to exhibit four different
regimes: elastic expansion; plastic yielding, when the mean stress is nearly
constant, but the stress-triaxiality increases rapidly together with
exponential growth of the void; saturation of the stress-triaxiality; and
finally the failure.Comment: 35 figures, which are small (and blurry) due to the space
limitations; submitted (with original figures) to Physical Review B. Final
versio
Observation and Assignment of Silent and Higher Order Vibrations in the Infrared Transmission of C60 Crystals
We report the measurement of infrared transmission of large C60 single
crystals. The spectra exhibit a very rich structure with over 180 vibrational
absorptions visible in the 100 - 4000 cm-1 range. Many silent modes are
observed to have become weakly IR-active. We also observe a large number of
higher order combination modes. The temperature (77K - 300K) and pressure (0 -
25KBar) dependencies of these modes were measured and are presented. Careful
analysis of the IR spectra in conjunction with Raman scattering data showing
second order modes and neutron scattering data, allow the selection of the 46
vibrational modes C60. We are able to fit *all* of the first and second order
data seen in the present IR spectra and the previously published Raman data
(~300 lines total), using these 46 modes and their group theory allowed second
order combinations.Comment: REVTEX v3.0 in LaTeX. 12 pages. 8 Figures by request. c60lon
Remote detection of past habitability at Mars-analogue hydrothermal alteration terrains using an ExoMars Panoramic Camera emulator
JKH is funded by a Birkbeck University of London Graduate Teaching Assistantship. CRC is funded by a Royal Society of Edinburgh Personal Research Fellowship co-funded by Marie Curie Actions. The Aberystwyth research leading to these results has been funded by the UK Space Agency, ExoMars Panoramic Camera (PanCam) Grant Nos. ST/G003114/1, ST/I002758/1, STL001454/1, and the UK Space Agency CREST2 PanCam-2020 research Grant No. ST/L00500X/1. Additional Aberystwyth funding has come from The European Community’s Seventh Framework Programme (FP7/2007-2013), Grant Agreement Nos. 21881 PRoVisG, 241523 PRoViScout, and Grant Agreement No. 312377 PRoViDE. PMG is funded by a UK Space Agency Aurora Fellowship (grants ST/J005215/1 and ST/L00254X/1).A major scientific goal of the European Space Agency’s ExoMars 2018 rover is to identify evidence of life within the martian rock record. Key to this objective is the remote detection of geological substrates that are indicative of past habitable environments, which will rely on visual (stereo wide-angle, and high resolution images) and multispectral (440–1000 nm) data produced by the Panoramic Camera (PanCam) instrument. We deployed a PanCam emulator at four hydrothermal sites in the Námafjall volcanic region of Iceland, a Mars-analogue hydrothermal alteration terrain. At these sites, sustained acidic–neutral aqueous interaction with basaltic substrates (crystalline and sedimentary) has produced phyllosilicate, ferric oxide, and sulfate-rich alteration soils, and secondary mineral deposits including gypsum veins and zeolite amygdales. PanCam emulator datasets from these sites were complemented with (i) NERC Airborne Research and Survey Facility aerial hyperspectral images of the study area; (ii) in situ reflectance spectroscopy (400–1000 nm) of PanCam spectral targets; (iii) laboratory X-ray Diffraction, and (iv) laboratory VNIR (350–2500 nm) spectroscopy of target samples to identify their bulk mineralogy and spectral properties. The mineral assemblages and palaeoenvironments characterised here are analogous to neutral–acidic alteration terrains on Mars, such as at Mawrth Vallis and Gusev Crater. Combined multispectral and High Resolution Camera datasets were found to be effective at capturing features of astrobiological importance, such as secondary gypsum and zeolite mineral veins, and phyllosilicate-rich substrates. Our field observations with the PanCam emulator also uncovered stray light problems which are most significant in the NIR wavelengths and investigations are being undertaken to ensure that the flight model PanCam cameras are not similarly affected.Publisher PDFPeer reviewe
- …