54 research outputs found

    Accelerated discovery of two crystal structure types in a complex inorganic phase field

    Get PDF
    The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition1. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios2,3. Computational methods have been developed to guide synthesis by predicting structures at specific compositions4,5,6 and predicting compositions for known crystal structures7,8, with notable successes9,10. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge8,11. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them

    A Novel Protein Kinase-Like Domain in a Selenoprotein, Widespread in the Tree of Life

    Get PDF
    Selenoproteins serve important functions in many organisms, usually providing essential oxidoreductase enzymatic activity, often for defense against toxic xenobiotic substances. Most eukaryotic genomes possess a small number of these proteins, usually not more than 20. Selenoproteins belong to various structural classes, often related to oxidoreductase function, yet a few of them are completely uncharacterised

    Uptake of hysterectomy and bilateral salpingooophorectomy in carriers of pathogenic mismatch repair variants: a Prospective Lynch Syndrome Database report

    Get PDF
    Purpose: This study aimed to report the uptake of hysterectomy and/or bilateral salpingo-oophorectomy (BSO) to prevent gynaecological cancers (risk-reducing surgery [RRS]) in carriers of pathogenic MMR (path_MMR) variants. Methods: The Prospective Lynch Syndrome Database (PLSD) was used to investigate RRS by a cross-sectional study in 2292 female path_MMR carriers aged 30-69 years. Results: Overall, 144, 79, and 517 carriers underwent risk-reducing hysterectomy, BSO, or both combined, respectively. Two-thirds of procedures before 50 years of age were combined hysterectomy and BSO, and 81% of all procedures included BSO. Risk-reducing hysterectomy was performed before age 50 years in 28%, 25%, 15%, and 9%, and BSO in 26%, 25%, 14% and 13% of path_MLH1, path_MSH2, path_MSH6, and path_PMS2 carriers, respectively. Before 50 years of age, 107 of 188 (57%) BSO and 126 of 204 (62%) hysterectomies were performed in women without any prior cancer, and only 5% (20/392) were performed simultaneously with colorectal cancer (CRC) surgery. Conclusion: Uptake of RRS before 50 years of age was low, and RRS was rarely undertaken in association with surgical treatment of CRC. Uptake of RRS aligned poorly with gene-and age-associated risk estimates for endometrial or ovarian cancer that were published recently from PLSD and did not correspond well with current clinical guidelines. The reasons should be clarified. Decision-making on opting for or against RRS and its timing should be better aligned with predicted risk and mortality for endometrial and ovarian cancer in Lynch syn-drome to improve outcomes. (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle

    Get PDF
    Laboratory experiments and seismology data have created a clear theoretical picture of the most abundant minerals that comprise the deeper parts of the Earth’s mantle. Discoveries of some of these minerals in ‘super-deep’ diamonds—formed between two hundred and about one thousand kilometres into the lower mantle—have confirmed part of this picture1,2,3,4,5. A notable exception is the high-pressure perovskite-structured polymorph of calcium silicate (CaSiO3). This mineral—expected to be the fourth most abundant in the Earth—has not previously been found in nature. Being the dominant host for calcium and, owing to its accommodating crystal structure, the major sink for heat-producing elements (potassium, uranium and thorium) in the transition zone and lower mantle, it is critical to establish its presence. Here we report the discovery of the perovskite-structured polymorph of CaSiO3 in a diamond from South African Cullinan kimberlite. The mineral is intergrown with about six per cent calcium titanate (CaTiO3). The titanium-rich composition of this inclusion indicates a bulk composition consistent with derivation from basaltic oceanic crust subducted to pressures equivalent to those present at the depths of the uppermost lower mantle. The relatively ‘heavy’ carbon isotopic composition of the surrounding diamond, together with the pristine high-pressure CaSiO3 structure, provides evidence for the recycling of oceanic crust and surficial carbon to lower-mantle depths
    • …
    corecore