69 research outputs found

    Room temperature triplet state spectroscopy of organic semiconductors

    Get PDF
    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is ‘dark’ with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.United States. Dept. of Energy. Center for Excitonics (Award DE-SC0001088

    Evaluation and Characterization of Bacterial Metabolic Dynamics with a Novel Profiling Technique, Real-Time Metabolotyping

    Get PDF
    BACKGROUND: Environmental processes in ecosystems are dynamically altered by several metabolic responses in microorganisms, including intracellular sensing and pumping, battle for survival, and supply of or competition for nutrients. Notably, intestinal bacteria maintain homeostatic balance in mammals via multiple dynamic biochemical reactions to produce several metabolites from undigested food, and those metabolites exert various effects on mammalian cells in a time-dependent manner. We have established a method for the analysis of bacterial metabolic dynamics in real time and used it in combination with statistical NMR procedures. METHODOLOGY/PRINCIPAL FINDINGS: We developed a novel method called real-time metabolotyping (RT-MT), which performs sequential (1)H-NMR profiling and two-dimensional (2D) (1)H, (13)C-HSQC (heteronuclear single quantum coherence) profiling during bacterial growth in an NMR tube. The profiles were evaluated with such statistical methods as Z-score analysis, principal components analysis, and time series of statistical TOtal Correlation SpectroScopY (TOCSY). In addition, using 2D (1)H, (13)C-HSQC with the stable isotope labeling technique, we observed the metabolic kinetics of specific biochemical reactions based on time-dependent 2D kinetic profiles. Using these methods, we clarified the pathway for linolenic acid hydrogenation by a gastrointestinal bacterium, Butyrivibrio fibrisolvens. We identified trans11, cis13 conjugated linoleic acid as the intermediate of linolenic acid hydrogenation by B. fibrisolvens, based on the results of (13)C-labeling RT-MT experiments. In addition, we showed that the biohydrogenation of polyunsaturated fatty acids serves as a defense mechanism against their toxic effects. CONCLUSIONS: RT-MT is useful for the characterization of beneficial bacterium that shows potential for use as probiotic by producing bioactive compounds

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    A Video Speed Tactile Camera

    No full text

    Electronic excitations and alternation of conjugated polymers

    No full text
    The electronic excitations and fluorescence of conjugated polymers are related to large or small alternation ? of the transfer integrals t(1 ± ?) along the backbone. The fluorescence of polysilanes (PSs) and poly (para-phenylenevinylene (PPV) is linked to large ?, which places the one-photon gap Eg below the lowest two-photon gap Ea and reduces distortions due to electron-phonon (e-p) coupling. In contrast to small ? not, vert, similar 0.1 in ?-conjugated polymers, such as polyacetylene (PA), para-conjugated phenyls lead to an extended ?-system with increased alternation, to states localized on each ring and to charge-transfer excitations between them. Surprisingly good agreement is found between semiempirical parametric method 3 (PM3) bond lengths and exact Pariser-Parr-Pople (PPP) ?-bond orders for trans-stilbene, where the PPV bipolarons are confined to two phenyls. Stilbene spectra are consistent with increased alternation and small e-p distortions

    Piezoelectric composite forming and its characterization

    No full text
    corecore