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Abstract Wide-angle X-ray scattering in conjunction with
pole figure technique was used to study the texture of
poly(vinylidene fluoride) (PVDF) α and γ phase crystals
in nanolayered polysulfone/poly(vinylidene fluoride)
films (PSF/PVDF) produced by layer-multiplying
coextrusion. In all as-extruded PSF/PVDF films, the
PVDF nanolayers crystallized into the α phase crystals.
A large fraction of those crystals was oriented with mac-
romolecular chains perpendicular to the PSF/PVDF inter-
face as evidenced from the (021) pole figures. Further
refinement of the texture occurs during isothermal recrys-
tallization at 170 °C in conjunction with transformation of
α to γ crystals. The γ crystals orientation was probed
with the (004) pole figures showing the c-axis of PVDF
γ crystals perpendicular to the PSF/PVDF interface. The
thinner the PVDF layers the stronger the orientation of γ
crystals. It was proven that the X-ray reflections from the
(021) planes of α crystals and from the (004) planes of γ
crystals are not overlapped with other reflections and can
be effectively used for the texture determination of PVDF
nanolayers in multilayered PSF/PVDF films.
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Introduction

Poly(vinylidene fluoride) (PVDF) is a partially crystalline linear
hydrofluorocarbon polymer exhibiting extraordinary electrical
properties, ranging from those of a typical dielectric polymer to
those of a versatile ferroelectric material, as a consequence of its
crystalline structure and the abundance of polymorphic phases.
Four polymorphs, α, β, γ and δ, have been documented so far
[1, 2], and the fifth ε form is strongly suggested to exist [3]. A
rather strong electric moment in the PVDFmonomer unit arises
because of a strong electronegativity of fluorine atoms as com-
pared to those of hydrogen and carbon atoms. Thus, each mac-
romolecular chain possesses a dipole moment perpendicular to
the polymer chain [4, 5]. If a polymer chain is packed in crystals
to form parallel dipoles, the crystal possesses a net dipole mo-
ment as in polar β, γ, and δ forms; whereas, in antiparallel
chain dipoles alignment, the net dipole moment vanishes as in
nonpolar α and ε phases. The most common polymorph of
PVDF is the α phase predominantly obtained during crystalli-
zation from the melt at moderate or high supercoolings [6, 7].
The α phase is formed also during polymerization, and it is
characterized by a trans-gauche-trans-gauche′ (TGTG′) confor-
mation of macromolecular chains. It is nonpolar and does not
exhibit ferroelectricity; however, when deformed, it displays a
large flexoelectric effect, connected with the strain gradient [8].

The α phase can be transformed into three other poly-
morphic forms under an action of sufficient mechanical
stress, heat, or electrical field. The β phase, usually obtain-
ed during mechanical deformation of α spherulites [9–16],
is presently the most important polymorph of PVDF used
extensively for piezoelectric and pyroelectric applications.
An all-trans (TT) molecular conformation of PVDF is re-
sponsible for the ferroelectric properties. However, the
fluorine atoms are too large to allow a simple all-trans
conformation, and they are slightly offset to form a zigzag
arrangement along the crystal c-axis [17].
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The presence of γ phase has been reported in PVDF films
crystallized from the dimethyl sulfoxide, dimethyl acetamide,
and dimethyl formamide solutions [18, 19] as well as in the
samples crystallized at high pressures [20, 21], at high tem-
peratures [6, 7, 22, 23], and after annealing of the α phase
crystals [7, 24]. The macromolecular chains of γ phase are in
the TTTGTTTG′ conformation and can be considered, regard-
ing the ferroelectric effect, as an intermediate between the α
and β phases. When formed during melt crystallization above
160 °C, the γ phase reaches the highest concentration close to
170 °C [25].

The polar δ phase can be formed by poling the antipolar α
phase at high electric fields [26, 27]. This form has the same
unit cell dimension along c-axis and macromolecular chain
conformation as the α form, the difference lying in the inter-
chain packing alone.

A fifth crystallographic form is the ε phase containing the
TTTGTTTG′ conformation of macromolecular chains similar
to the γ phase but in an antipolar arrangement [3].

Mechanical deformation of the γ phase at most temper-
atures leads to an almost complete transformation to β
phase [13, 14], so for many years, oriented films contain-
ing γ phase had not been available. However, Mackey
et al. [28] showed that isothermal recrystallization of
PVDF nanolayers in multilayered PSF/PVDF films at high
temperatures causes the phase transition from α to γ phase
crystals.

PVDF is used in a wide range of applications due to the
ferroelectric properties of β, γ, and δ crystals, which in turn is
closely related to the alignment and orientation of those crys-
tals. There are many means of enforcing PVDF crystal align-
ment and orientation; most of them adopted from known pro-
cesses designed for commodity polymers.

The methods used to identify the polymorphic phases of
PVDF and to determine the orientation of crystals in pure
PVDF films or in blends with other polymers such as poly-
amide 11 (PA 11) [29], poly(methyl methacrylate) (PMMA)
[30], polyvinylpyrrolidone (PVP) [31], polycarbonate (PC)
[28], and polysulfone (PSF) [28] include mainly X-ray diffrac-
tion [1, 9, 14, 29–34], infrared spectroscopy (FTIR) [6, 11, 12,
29, 31, 33, 35–37], Raman scattering [38, 39], and nuclear
magnetic resonance (NMR) [36]. Nevertheless, all methods
mentioned above enabling identification of PVDF poly-
morphs, are insufficient to determine fully the preferred ori-
entation of PVDF crystals and the texture of films. In the case
of two-dimensional wide-angle X-ray diffraction (WAXS-
2D), the information is incomplete because the alignment
and orientation of PVDF crystals in the direction along the
incident X-ray beam path cannot be elucidated. Full texture
determination can be achieved using X-ray pole figures tech-
nique [40]. In the literature, there is practically no information
about this technique used to examine the texture of PVDF.
Only Wang and Cakmak [30] applied WAXS pole figures of

(020) plane to examine the orientation of PVDF α phase crys-
tals in injection-molded PVDF and PVDF/PMMA blends.

In this article, we concentrate on the full texture determi-
nation of PVDF nanolayers in multilayered PSF/PVDF film
systems utilizing X-ray pole figures of reflections from select-
ed crystallographic planes.

Experimental

Materials

Semicrystalline poly(vinylidene fluoride) (PVDF) homopoly-
mer Solef® 6010 from Solvay Solexis crystallizing from the
melt in the α phase [41] and amorphous polysulfone (PSF),
Udel P-3703® obtained from Solvay Advanced Polymers,
were chosen as raw materials to produce 12-μm thick PSF/
PVDF film systems by layer-multiplying coextrusion at con-
ditions described in details by Mackey et al. [28]. The com-
positions of all film systems studied in the paper are collected
in Table 1. In each layered system, the PVDF nominal layer
thickness was varied from 28 to 225 nm. The multilayered
PSF/PVDF films were isothermally recrystallized using two
oil baths containing silicon oil at recrystallization tempera-
tures of 145 °C and 170 °C, respectively [28].

X-ray measurements

The overall orientation of crystallographic planes of the sam-
ples was determined by means of computer-controlledWAXS
system equippedwith a pole figure attachment associated with
a wide-angle goniometer (DRON 2.0) coupled to a sealed tube
source of filtered Cu Kα radiation (Phillips), operating at
50 kVand 30 mA. The specimens in the form of sandwiched
films (at least 1×1 cm) and approximately 0.15 mm thick

Table 1 The as-extruded and recrystallized multilayered PSF/PVDF
film systems

Sample
code

Number
of layers

Composition
(v/v) PSF/PVDF

PVDF nominal
layer thickness
(nm)

Recrystallization
temperature/time
(°C/h)

#1 1 0/100 – –

#1a 1 0/100 – 145/5

#1b 1 0/100 – 170/96

#2 32 70/30 225 –

#3 32 70/30 225 145/5

#4 256 50/50 47 –

#5 256 50/50 47 170/96

#6 256 70/30 28 –

#7 256 70/30 28 170/96
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were assembled with extrusion direction vertical. The WAXS
reflection scans of the samples were collected with the step of
0.05°. The X-ray data for pole figure construction were col-
lected for selected reflections. The receiving slits were set to
record the integral intensity of the reflection. Experimental X-
ray diffraction data were corrected for background scattering,
sample absorption, and defocusing of the beam. All pole fig-
ures were plotted with the POD program (Los Alamos
National Lab, NM). Other details of the experimental proce-
dure are described elsewhere [42].

Results and discussion

In order to identify and select the X-ray diffraction peaks
for further detailed analysis of crystalline structure and
texture of our multilayered PSF/PVDF films, we summa-
rized the current knowledge about predicted and observed
X-ray reflections from the PVDF crystals. In Tables 2, 3,
4, and 5, the most important known diffraction peaks are
collected for the α, β, γ, and δ crystallographic forms of
PVDF.

Table 2 The data for crystallographic planes of α form of PVDF and the observed wide-angle diffraction peaks

hkl dcalc, (nm) 2 calc, (
o
) dobs, (nm) 2 obs, (

o
) 

100 0.496 17.88 0.488 [43]; 0.502 [44] 17.7 [45]; 18.1 [46]

020 0.482 18.41 0.504 [43]; 0.484 [44] 18.4 [45]; 18.5 [47]

110 0.441 20.14 0.441 [43] 19.9 [44] 

120 0.346 25.75 0.345 [1,48] −
021 0.334 26.69 0.335 [44] 26.6 [33] 

111 0.319 27.97 − 27.8 [45]; 27.4 [47]

200 0.248 36.22 0.264 [43] 35.7 [45] 

040 0.241 37.31 0.240 [48]; 0.255 [49] −
210 0.240 37.47 − −
002 0.231 38.99 − 38.9 [50]; 39 [45]

140 0.217 41.62 0.213 [1,48] −
022 0.208 43.51 − 57.4 [45]

230 0.196 46.32 
0.196 [1,48] 

− 
050 −90.74391.0

300 0.165 55.71 0.163 [48] −
dcalc—interplanar distance calculated from the unit cell ofα form PVDF crystals (orthorhombic, a=0.496 nm, b=0.964 nm, c=0.462 nm); 2θcalc—wide
angle of diffraction maximum calculated from the Bragg’s law (nλ=2dsinθ), where λ, wavelength of the incident X-ray beam has been assumed to
0.15418 nm; dobs and 2θobs—interplanar distance and wide angle of diffraction maximum observed in the references [1, 33, 43–50]

Table 3 The data for crystallographic planes of β form of PVDF and the observed wide-angle diffraction peaks

hkl dcalc, (nm) 2 calc, (
o
) dobs, (nm) 2 obs, (

o
) 

200 0.429 20.70 
0.427 [43]; 0.425 [51] 20.6 [47]; 20.8 [45]

110 0.426 20.85 

001 0.256 35.05 − 35 [50]; 35.6 [46]

310 0.247 36.37 − 37 [46]

020 0.246 36.53 −
36.6 [45] 

101 0.245 36.68 −
221 0.164 56.08 − 56.1 [45]

dcalc—interplanar distance calculated from the unit cell ofβ form PVDF crystals (orthorhombic, a=0.858 nm, b=0.491 nm, c=0.256 nm); 2θcalc—wide
angle of diffraction maximum calculated from the Bragg’s law (nλ=2dsinθ), where λ, wavelength of the incident X-ray beam, has been assumed to
0.15418 nm; dobs and 2θobs—interplanar distance and wide angle of diffraction maximum observed in the references [43, 45–47, 50, 51]
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Table 4 The data for crystallographic planes of γ form of PVDF and the observed wide-angle diffraction peaks

− 

− 

− 

− 

hkl dcalc, (nm) 2 calc, (
o
) dobs, (nm) 2 obs, (

o
)

020 0.483 18.37 0.480 [34] 18.4 [43]; 18.5 [45]

002 0.458 19.38 19.2 [45]

110 0.442 20.09 0.442 [34] 20 [33]; 20.1 [45]

101 0.428 20.75 20.3 [45]

021 0.427 20.80 0.431 [34]

111 0.391 22.74 0.395 [34]

022 0.333 26.77 0.336 [34] 26.8 [45]

102 0.329 27.10 0.336 [1]

130 0.270 33.18 0.271 [1]

023 0.258 34.77 0.260 [34]

131 0.257 34.91 0.258 [34]

200 0.248 36.22 0.248 [1] 36.0 [43]; 36.2 [45]

201 0.237 37.96

0.237 [34]

39.2 [51]

041 0.234 38.47 39.2 [51]; 40 [33]

132 0.230 39.17 39.2 [51]; 39.5 [43]; 40 [33]

211 0.230 39.17 38.7 [45]

004 0.229 39.34 0.230 [1,7] 39.3 [46]

140 0.217 41.62 41.7 [43]

042 0.214 42.23
0.214 [34]

221 44.34312.0

212 0.209 43.29  0.214 [1] 43.2 [43]

114 0.200 45.34 0.201 [34]

150 0.180 50.72

0.176 [34]151 59.15671.0

240 29.25371.0

241 0.169 54.28
0.168 [34]

152 89.45761.0

242 0.160 57.61 0.160 [34]

310 0.163 56.45

0.162 [34]
060 22.75161.0

311 00.85951.0

061 00.85951.0

260 0.135 69.65

0.132 [34]
261 58.07331.0

170 58.07331.0

171 01.27131.0

080 0.121 79.15

0.120 [34]
420 59.97021.0

081 59.97021.0

421 85.18811.0

440 0.110 88.99

0.109 [34]

441 20.09901.0

280 20.09901.0

281 90.19801.0

442 23.39601.0

370 0.106 93.32

0.106 [34]190 84.49501.0

371 84.49501.0

− 
− 

− 
− 
− 
− 

− 
− 

− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 
− 

dcalc—interplanar distance calculated from the unit cell of γ form PVDF crystals (monoclinic, a=0.497 nm, b=0.966 nm, c=0.918 nm, β-angle=92.9°);
2θcalc—wide angle of diffraction maximum calculated from the Bragg’s law (nλ=2dsinθ), where λ, wavelength of the incident X-ray beam, has been
assumed to 0.15418 nm; dobs and 2θobs—interplanar distance and wide angle of diffraction maximum observed in the references [1, 7, 33, 34, 43, 45, 51]
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Figure 1 presents the WAXS diffractograms of as-extruded
PVDF control film, PVDF control film annealed at 145 °C for
5 h, PVDF control film annealed at 170 °C for 96 h, and PSF/
PVDF film systems.

For as-extruded 0.15-mm thick PVDF control film (sample
#1), five diffraction peaks with maxima at 17.75°, 18.30°,
19.85°, 26.50°, and 35.90° are observed in Fig. 1. Their posi-
tions imply that they are reflected from (100), (020), (110),
(021), and (200) crystallographic planes of PVDF α phase

crystals. No other crystallographic forms were detected in
the WAXS scan.

Annealing of PVDF control film at 145 °C for 5 h (sample
#1a) causes refining of α crystals, note the intensification of
(021) reflection at 26.50° and the appearance of (120), (111),
and (002) reflections at 25.55°, 27.80°, and 35.80°, respec-
tively. No other crystallographic forms of PVDF are present in
the sample.

Annealing of the PVDF control film at 170 °C for 96 h
(sample #1b) drastically changes the crystalline content. The
α crystals disappeared and instead of them, the γ crystals
appeared. The reflections of (020), (110)/(101), and (004)
crystallographic planes of PVDF γ phase crystals are ob-
served at 18.55°, 20.20°, and 39.20°, respectively.

The film #2 contains only 30 vol.% of PVDF in the form
of 255-nm thick layers between 70 vol.% of PSF layers.
From the X-ray diffraction peaks, it is evident that the
PVDF crystals are also of the α phase although the diffrac-
tion is of rather low intensity due to lower concentration of
PVDF in the film and probably due to a spatial orientation
of α crystals.

After isothermal recrystallization at 145 °C of the 225-nm
thick PVDF layers in the PSF/PVDF film (sample #3), two
diffraction peaks appeared, at 35.85° for (200) plane of α
phase and at 39.10°. This last diffraction peak was identified
as PVDF γ phase crystal (004) reflex [1, 34, 52]. Other
diffraction peaks with (hk0) indices are not well seen in
reflection; hence, the crystalline fraction of the sample #3
consists of a combination of α and γ phases, however,
oriented.

The film #4 contains 50 vol.% of PVDF in the form of 47-
nm layers between 50 vol.% of PSF layers. From the X-ray

Table 5 The data for crystallographic planes of δ form of PVDF and
the observed wide-angle diffraction peaks

hkl dcalc, (nm) 2 calc, (
o
) dobs, (nm) [48]

020 0.482 18.41 0.484  

110 0.441 20.14 0.442  

101 0.338 26.37 
0.335 

021 0.334 26.69 

111 0.319 27.97 0.321 

121 0.277 32.32 0.279 

130 0.270 33.18 0.269 

200 0.248 36.22 0.249 

040 0.241 37.31 0.240 

131 0.233 38.64 0.234 

220 0.221 40.83 0.213 

041 0.214 42.23 
0.214 

211 0.213 42.44 

221 0.199 45.58 
0.198 

141 0.196 46.32 

150 0.180 50.72 0.179 

231 0.180 50.72 
0.180 

051 0.178 51.33 

151 0.168 54.63 0.167 

310 0.163 56.45 

0.162 241 0.162 56.83 

060 0.161 57.22 

311 0.154 60.08 
0.154 

061 0.152 60.95 

170 0.133 70.85 0.132 

dcalc—interplanar distance calculated from the unit cell of δ form PVDF
crystals (orthorhombic, a=0.496 nm, b=0.964 nm, c=0.462 nm);
2θcalc—wide angle of diffraction maximum calculated from the Bragg’s
law (nλ=2dsinθ), where λ, wavelength of the incident X-ray beam, has
been assumed to 0.15418 nm; dobs and 2θobs—interplanar distance and
wide angle of diffraction maximum observed in the reference [48]

Fig. 1 The WAXS diffractograms of as-extruded PVDF control film,
PVDF control film annealed at 145 °C for 5 h, PVDF control film
annealed at 170 °C for 96 h, and PSF/PVDF multilayered films, obtained
in the reflection mode. The curves are numbered according to the sample
codes from Table 1. The extrusion direction is vertical. The curves have
been shifted for better visualization
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diffraction peaks in the reflection mode, it is evident that the
PVDF crystals are of the α and γ phases, although the diffrac-
tion is again of rather low intensity due to a spatial orientation
of α and γ crystals. Other diffraction peaks with (hk0) indices
are not well seen in the reflection mode due to spatial
orientation.

After isothermal recrystallization at 170 °C of the 47-nm
thick PVDF layers in the PSF/PVDF film (#5), only one dif-
fraction peak at 39.10° of (004) reflection of γ phase is seen.
No sign of α form can be noticed.

In the film #6 with 28-nm thick PVDF layers the dif-
fraction peaks from the α form with diffraction maxima

Fig. 2 The pole figures of
normals to the (004) planes of
PVDF γ crystals: a as-extruded
PVDF control film, b PSF/PVDF
film with nominal PVDF layer
thickness of 225 nm, c PSF/
PVDF film with nominal PVDF
layer thickness of 255 nm iso-
thermally recrystallized at 145 °C,
d PSF/PVDF film with nominal
PVDF layer thickness of 47 nm, e
PSF/PVDF film with nominal
PVDF layer thickness of 47 nm
isothermally recrystallized at
170 °C, f PSF/PVDF film with
nominal PVDF layer thickness of
28 nm, and g PSF/PVDF film
with nominal PVDF layer thick-
ness of 28 nm isothermally re-
crystallized at 170 °C. The extru-
sion direction is vertical and the
transverse direction is horizontal.
The normal direction is the center
of pole figures
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from planes (020), (100), (110), and (200) are observed.
No diffraction from (021) of α form and no γ form re-
flections are noticed.

After isothermal recrystallization at 170 °C of the 28-nm
thick PVDF layers in the PSF/PVDF film (sample #7), the
diffraction peaks at 17.65°, 35.95°, and 39.10° are seen which
are identified as the (100) ofα form overlapped with the (020)
of γ form, the (200) of α form, and the (004) of γ phase,
respectively. Hence, the coexistence of α and γ forms can
be noticed.

In thinner PVDF layers, the α phase crystals grow with
structural defects and with orientation controlled by the PSF/
PVDF interface. In the cases of films #2, #4, and #6 with
PVDF nanolayers, the peak from (004) plane of γ phase be-
comes narrower and more intense when the samples were
isothermally recrystallized at 145 or 170 °C. This (004) peak
is isolated from other diffraction peaks and we postulate that it
can be used for clear and precise determination of c-axis ori-
entation of γ crystals. Similar role for the orientation of α
crystals can be served by (021) reflection which is also isolat-
ed from other diffraction peaks. This crystallographic plane is
tilted by 46.22° with respect to c-axis of α crystals. It is then
postulated that the orientation of α and γ crystals can be
precisely determined from pole figures of (021) and (004)
planes, respectively.

The orientation of PVDF chains in the crystals was exam-
ined using X-ray pole figures. The pole figures of normals to
the (004) plane for all multilayered PSF/PVDF film systems
are collected in Fig. 2.

From the pole figure in Fig. 2a, it is seen that there is no
preferred orientation of that small amount of γ phase crystals
present in the PVDF control film (sample #1), except for a
slight orientation due to the extrusion process. The non-
annealed film #2 with 255-nm thick PVDF layers also does
not show any orientation of γ crystals (Fig. 2b). A brief esti-
mation on the basis of WAXS 2θ diffractogram indicated that
the content of γ crystals is low in that sample (see Fig. 1).
Annealing at 145 °C of that film produced some small amount
ofγ crystals (sample #3); however, they are only little oriented
with c-axis (normal to (004) planes) perpendicular to the film
surface, as it can be judged from Fig. 2c. Non-annealed film
#4 with 47-nm thick PVDF layers also contain only small
amount of γ crystals, and they are unoriented as it can be
deduced from the (004) pole figure in Fig. 2d. In contrast, a
strong texture of (004) planes is detected in Fig. 2e for film #5
with 47-nm thick PVDF layers after annealing at 170 °C for

Fig. 3 The pole figures of normals to the (021) planes of α crystals in
non-annealed multilayered PSF/PVDF films with PVDF nominal layer
thickness of a 255 nm, b 47 nm, and c 28 nm. The extrusion direction is
vertical and the transverse direction is horizontal. The normal direction is
the center of the pole figure

Fig. 4 Schematics of the
orientation types of PVDF
crystals: a mixed orientation of α
crystals in as-extruded multilay-
ered PSF/PVDF films and b in-
plane orientation of γ crystals in
recrystallized multilayered PSF/
PVDF films
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96 h. Non-annealed film #6 with 28-nm thick PVDF layers
also contained very little amount of γ crystals (Fig. 2f). After
isothermal recrystallization of that film at 170 °C for 96 h
(sample #7), most of α crystals were transformed to γ crystals
showing very strong texture with most of normals to the (004)
planes being perpendicular to the film surface (Fig. 2g). PVDF
crystals are laying flat to the film plane exactly indicating the
suggested alignment ofγ phase crystals as showed byMackey
et al. [28]. At higher recrystallization temperature, i.e., at
170 °C PVDF nanolayers recrystallized as in-plane γ phase
crystals.

The above data on the orientation of PVDF γ crystals in
nanolayers, especially that crystals in thinner layers are more
perfectly oriented with c-axes perpendicular to the film sur-
face, led to the conclusion that the interface between PSF and
PVDF plays an important role in the orientation of γ crystals.
However, it is not clear whether the martensitic transformation
of α to γ crystals occurs via macromolecular chains reorien-
tation or the chains were already oriented perpendicular to the
interfaces in α crystals while the transformation relies on a
conformation change from TGTG′TGTG′ to TTTGTTTG′.
The answer can be found by investigating the α crystal texture
of non-annealed samples.

The pole figures of normals to the (021) planes of α crys-
tals for non-annealed multilayered PSF/PVDF films (samples
#2, #4 and #6) are presented in Fig. 3.

It is evident that the (021) planes of α crystals are prefer-
entially oriented at 40–45° with respect to the normal to PSF/
PVDF interfaces in all three multilayered PSF/PVDF films.
Stronger clustering of the (021) normals is observed for thin-
ner 28-nm PVDF layers. However, the texture in all three
samples is not very strong. Apparently, further refinement of
chains orientation perpendicular to film surface occurs during
isothermal recrystallization at 145 or 170 °C facilitated by
interaction of PVDF macromolecules with PSF/PVDF
interface.

Conclusions

The PVDF nanolayers in all as-extruded PSF/PVDF films
crystallized into theα phase structure. After isothermal recrys-
tallization at 170 °C, α phase crystals in PVDF layers trans-
formed into γ phase crystals.

The X-ray diffraction in conjunction with pole figures was
used to examine the texture of PVDF in multilayered PSF/
PVDF films. The (021) planes of α crystals are well suited
to use them for the determination of the PVDF crystal texture.
There is some orientation of the (021) planes at 40–45° to the
PSF/PVDF interface in all as-extruded multilayered films. For
γ crystals, the (004) planes may be used for the determination
of γ crystal orientation. Since the normals to (004) planes are
parallel tomacromolecular chains, the pole figures enabled the

determination of the overall orientation of PVDF γ crystals for
thermally treated multilayered PSF/PVDF film systems. Most
of those γ crystalline lamellae are in-plane position which
resulted from initial similar orientation of α crystals in as-
extruded PSF/PVDF films. Further refinement of the texture
occurs during isothermal recrystallization in conjunction with
transformation of α to γ crystals and due to the interaction of
PVDF with PSF/PVDF interface. The initial orientation of α
crystals and resulted γ crystal orientation after α to γ transi-
tion are illustrated in Fig. 4.

Such in-plane orientation of polymer crystals with macro-
molecular chains perpendicular to the interface was reported
previously by us for the system of nearly amorphous poly(-
ethylene-co-acrylic acid) (EAA) and crystalline polyethylene
oxide (PEO) [53]. Such a possibility was also postulated by
Ma, Hu, and Reiter defining such system as crystals on sticky
walls [54].
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