3,129 research outputs found
The damper placement problem for large flexible space structures
The damper placement problem for large flexible space truss structures is formulated as a combinatorial optimization problem. The objective is to determine the p truss members of the structure to replace with active (or passive) dampers so that the modal damping ratio is as large as possible for all significant modes of vibration. Equivalently, given a strain energy matrix with rows indexed on the modes and the columns indexed on the truss members, we seek to find the set of p columns such that the smallest row sum, over the p columns, is maximized. We develop a tabu search heuristic for the damper placement problems on the Controls Structures Interaction (CSI) Phase 1 Evolutionary Model (10 modes and 1507 truss members). The resulting solutions are shown to be of high quality
Minimizing distortion in truss structures via Tabu search
The shape control of large flexible space structures is of great interest to structural designers. A related problem is to seek ways to minimize the need for active controls by careful design and construction of the space structure. A tetrahedral truss structure that is used to support a precision segmented reflector or antenna surface is considered. The structure has a hexagonal platform and is characterized by the number of rings of members in the truss. For simplicity it is assumed that a flat truss geometry exists. Hence, all structural members and ball joints are required to have the same nominal length and diameter, respectively. Inaccuracies in the length of member or diameters of joints may produce unacceptable levels of surface distortion and internal forces. In the case of a truss structure supporting an antenna, surface distortions may cause unacceptable gain loss or pointing errors. The focus is solely on surface distortion, however, internal forces may be treated in a similar manner. To test the Tabu search code for DSQRMS the appropriate influence matrices are used for a flat, two-ring tetrahedral reflector truss generated by Green and Haftka (1989). In this example there are 102 members (NMEMB) and 31 ball joints (NJOINT) of the same nominal length, respectively. Hence, all the members may be interchanged and all the joints may be interchanged. In addition, 19 positions on the surface of the truss (NNODES) were used to measure error influences. After a variety of experiments a set of good parameters was choosen for Tabu search. The sample size at each iteration is 10*NMEMB and the short term memory size is 40. In addition four pruning rules were used to accelerate the search.
Minimizing distortion and internal forces in truss structures by simulated annealing
Inaccuracies in the length of members and the diameters of joints of large truss reflector backup structures may produce unacceptable levels of surface distortion and member forces. However, if the member lengths and joint diameters can be measured accurately it is possible to configure the members and joints so that root-mean-square (rms) surface error and/or rms member forces is minimized. Following Greene and Haftka (1989) it is assumed that the force vector f is linearly proportional to the member length errors e(sub M) of dimension NMEMB (the number of members) and joint errors e(sub J) of dimension NJOINT (the number of joints), and that the best-fit displacement vector d is a linear function of f. Let NNODES denote the number of positions on the surface of the truss where error influences are measured. The solution of the problem is discussed. To classify, this problem was compared to a similar combinatorial optimization problem. In particular, when only the member length errors are considered, minimizing d(sup 2)(sub rms) is equivalent to the quadratic assignment problem. The quadratic assignment problem is a well known NP-complete problem in operations research literature. Hence minimizing d(sup 2)(sub rms) is is also an NP-complete problem. The focus of the research is the development of a simulated annealing algorithm to reduce d(sup 2)(sub rms). The plausibility of this technique is its recent success on a variety of NP-complete combinatorial optimization problems including the quadratic assignment problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize. All computational experiments were done on a MicroVAX. The two interchange heuristic is very fast but produces widely varying results. The two and three interchange heuristic provides less variability in the final objective function values but runs much more slowly. Simulated annealing produced the best objective function values for every starting configuration and was faster than the two and three interchange heuristic
Approximating Dynamic Time Warping and Edit Distance for a Pair of Point Sequences
We give the first subquadratic-time approximation schemes for dynamic time
warping (DTW) and edit distance (ED) of several natural families of point
sequences in , for any fixed . In particular, our
algorithms compute -approximations of DTW and ED in time
near-linear for point sequences drawn from k-packed or k-bounded curves, and
subquadratic for backbone sequences. Roughly speaking, a curve is
-packed if the length of its intersection with any ball of radius
is at most , and a curve is -bounded if the sub-curve
between two curve points does not go too far from the two points compared to
the distance between the two points. In backbone sequences, consecutive points
are spaced at approximately equal distances apart, and no two points lie very
close together. Recent results suggest that a subquadratic algorithm for DTW or
ED is unlikely for an arbitrary pair of point sequences even for . Our
algorithms work by constructing a small set of rectangular regions that cover
the entries of the dynamic programming table commonly used for these distance
measures. The weights of entries inside each rectangle are roughly the same, so
we are able to use efficient procedures to approximately compute the cheapest
paths through these rectangles
Colonoscopy: the current king of the hill in the United States
Colonoscopy is the dominant colorectal cancer screening strategy in the USA. There are no randomized controlled trials completed of screening colonoscopy, but multiple lines of evidence establish that colonoscopy reduces colorectal cancer incidence in both the proximal and distal colon. Colonoscopy is highly operator dependent, but systematic efforts to measure and improve quality are impacting performance. Colonoscopy holds a substantial advantage over other strategies for detection of serrated lesions, and a recent case–control study suggests that once-only colonoscopy or colonoscopy at 20-year intervals, by a high-level detector, could ensure lifetime protection from colorectal cancer for many patients
Colorectal Cancer Screening: A Guide to the Guidelines
The two most recent guidelines for colorectal cancer screening are those of the Agency for Healthcare Policy and Research, and the American Cancer Society. The guidelines are similar in many regards and reflect current literature, consensus opinion and compromise between members of multidisciplinary panels. The emphasis of both guidelines is to increase the options available for colorectal cancer screening. Increasing choice should expand the attractiveness of colorectal cancer screening to more patients and physicians, and the development of guidelines should help compel payers to provide reimbursement for colorectal cancer screening. These guidelines are summarized and evaluated as they pertain to colorectal cancer screening
- …