research

Minimizing distortion and internal forces in truss structures by simulated annealing

Abstract

Inaccuracies in the length of members and the diameters of joints of large truss reflector backup structures may produce unacceptable levels of surface distortion and member forces. However, if the member lengths and joint diameters can be measured accurately it is possible to configure the members and joints so that root-mean-square (rms) surface error and/or rms member forces is minimized. Following Greene and Haftka (1989) it is assumed that the force vector f is linearly proportional to the member length errors e(sub M) of dimension NMEMB (the number of members) and joint errors e(sub J) of dimension NJOINT (the number of joints), and that the best-fit displacement vector d is a linear function of f. Let NNODES denote the number of positions on the surface of the truss where error influences are measured. The solution of the problem is discussed. To classify, this problem was compared to a similar combinatorial optimization problem. In particular, when only the member length errors are considered, minimizing d(sup 2)(sub rms) is equivalent to the quadratic assignment problem. The quadratic assignment problem is a well known NP-complete problem in operations research literature. Hence minimizing d(sup 2)(sub rms) is is also an NP-complete problem. The focus of the research is the development of a simulated annealing algorithm to reduce d(sup 2)(sub rms). The plausibility of this technique is its recent success on a variety of NP-complete combinatorial optimization problems including the quadratic assignment problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize. All computational experiments were done on a MicroVAX. The two interchange heuristic is very fast but produces widely varying results. The two and three interchange heuristic provides less variability in the final objective function values but runs much more slowly. Simulated annealing produced the best objective function values for every starting configuration and was faster than the two and three interchange heuristic

    Similar works