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ABSTRACT

The damper placement problem for large flexible space truss structures is formulated as a combinatorial
optimization problem. ‘I'he objective is to determine the p truss members of the structure to replace with
active (or passive) dampers so that the modal damping ratio is as large as possible for all significant modes
of vibration. Equivalently, given a strain energy matrix with rows indexed on the modes and the columns
indexed on the truss members we seek to find the set of p columns such that the smallest row sum, over the
p columns, is maximized. We develop a tabu search heuristic for the damper placement problems on the CSI
Phase I Evolutionary Model (10 modes and 1507 truss memebers). The resulting solutions are shown to be
of high quality.

1. INTRODUCTION

The demand for larger sized space structures with lower mass has led to the development of highly
flexible structures where, in effect, every point can move relative to the next. Traditionally, structural
mobion is viewed more simnply in terms of a sum of several dozen or more independent molions called nalural
motions. The problem of controlling the motion of a flexible structure is then reduced to controlling the
natural motions. Associated with each natural motion are three parameters: a mode which is a natural
spatial shape, a nafural frequency which expresses the rate of oscillation, and a natural decay rate whichis a
measure of the time required for the motion to decay. The contribution of each natural motion to the overall
motion depends on the degree to which it is excited by external forces.

The overall structural motion of a flexible truss structure can be reduced by the use of structural
dampers that both sense and dissipate vibrations. We focus on where to locate these dampers so that
vibrations arising from the control or operation of the structure and its payloads or by cyclic thermal
expansion and contraction of the space structure can be damped as effectively as possible. There are several
mechanisms available for vibrational damping. We consider the replacement of some of the truss members by
active dampers which sense axial displacement (strain) and induce a compensating displacement. (A related
option is to replace some of the truss members with passive dampers which dissipate strain energy due to
their material properties.) Fach of these techniques for damping increases the weight and cost of the truss
structure. Hence, structural designers are required to locate as few dampers as possible and still maintain
an appopriate level of vibrational damping. .

2. FORMULATION

The CSI Phase I Evolutionary Design (see Figure 1) is an example of a large flexible space truss structure.
A normal modes analysis of a finite element model of this structure yielded a 10 (nmodes) by 1507 (nmembs)
modal strain energy matrix. Let Dy denote this matrix with row index set I and column index set J. The
entries in the matrix have been normalized so that each d;; denotes the percentage of the total modal strain
energy imparted in mode i to truss member j.

The goal of the damper placement problem is to select p truss members to be replaced by active (passive)
dampers so that thc modal damping ratio is maximized for all significant modes. Maximizing the modal
damping ratio is a widely accepted goal in damper placement problems (see Anderson et al. 1991). However,
the modal damping ratio is difficult to determine explicitly and, consequently, the placement of active (or
passive) dampers has proved difficult (cf. Padula and Sandridge 1992 and Preumont et al. 1991). Both active
and passive dampers dissipate forces which are internal to the structure and are most effective replacing truss

133

L=
=
brought to you by .. CORE

provided by NASA Technical Reports Server


https://core.ac.uk/display/42809737?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

members with maximum extension or compression. The truss elements with maximum internal displacement
are those with the largest strain energy over all modes. Given a finite element model and the results of a
normal modes analysis the modal strain energy in each candidate location (truss member) for each significant
normal vibration mode can be estimated quite accurately. The damping achieved with active dampers
depends on the properties of the damper and the control law that is implemented. Following Padula and
Sandridge (1992) we use a force-feedback control law (cf. Preumont et al. (1991)) yielding damping ratios
that are directly proportional to the fraction of modal strain energy. Hence, the maximization of the modal
damping ratio for all modes can be accomplished by selecting the p damper locations that maximize the
minimum sum of modal strain energy over the p chosen locations. Padula and Sandridge (1992) formulate
this problem as a mixed 0/1 integer linear program (MILP).

Alternatively, the damper placement problem may be formulated as a combinatorial opimization prob-

lem. That is, given Dy we seek to find the nmodes by p submatrix whose smallest row sum is as large as
possible. Let Z(X) = minier 3 ;¢ x dij. Then the damper placement problem becomes

mazxcJs Z(X)
subject to |X| = p.

3. COMPUTATIONAL RESULTS

There arc scveral ways in which tabu scarch (and many other heuristic scarch stratcgics) can be of usc.
First, it can simply bc uscd to gencerate solutions to the damper placement problem. However, tabu scarch
by itself provides no information about the quality of the solution found. Solving the linear programing
(LP) relaxation of the MILP mentioned above is one way to get a good upper bound. Solving the MILP
with a branch and bound code will provide even better upper bounds as well as a lower bound (the MILP
solution). Table 1 compares the quality of solutions generated by the MILP formulation (solved by LINDO
with a limit of 10,000 iterations) and tabu search. Secondly, tabu search can be used to try and improve
upon the MILP solution or the LP relaxation of MILP. In the latter case fractional solutions will be present
and a mechanism for choosing a subset of the optimal decision variables must be found. We picked the p (
where p = 8, 16, or 32) decision variables with largest value (closest to one). For example, when p = § the
LP solution had 12 non-zero decision variables in the optimal solution. Of these 12 five had a value of one.
When p = 32 there are even fewer choices to be made. The LP optimal solution had only 35 non-zero decision
variables of which 29 had a value of one. Table 2 summarizes the performance of tabu search under three
different initial solutions—random, MILP solution, and LP relaxation. Reported timings are for a 16 MHz
386-class micro-computer. The solutions generated by LINDO for the MILP formulation were computed on
a CONVEX computer in about 4 minutes, this corresponds to approximately 200 hours of computational
effort on the 386 micro-computer.
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P LP U. Bnd IP/BB % UB Tabu % UB
8 1.6144 1.6131 1.3211 81.9 1.4291 88.6

16 3.1629 3.1110 2.7778 89.3 2.9647 95.3

32 5.8867 5.8838 5.6745 96.4 5.7943 98.5

Table 1. Best objective function value comparisons

P Random Time IP/BB Time LP Time
8 1.42901 8 min 1.3662 1 min. 1.4291 1 min
16 2.9647 210 min 2.8881 3 min 2.9332 1 min
32 5.7762 270 min 5.7635 50 min 5.7943 7 min

Table 2. Tabu Search results from different initial solutions

Figure 1. CSI Phase I Evolutionary Design
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