CORE

Minimizing Distortion and Internal Forces in Truss Structures by Simulated Annealing

by
Professor Rex K. Kincaid
Mathematics Department
The College of William and Mary
Williamsburg, VA 23185

Inacuracies in the length of members and the diameters of joints of large truss reflector backup structures may produce unacceptable levels of surface distortion and member forces. However, if the member lengths and joint diameters can be measured accurately it is possible to configure the members and joints so that root-mean-square (rms) surface error and/or rms member forces is minimized.

Following Greene and Haftka (1989) we assume that the force vector f is linearly proportional to the member length errors $\mathbf{e}_{\mathbf{M}}$ of dimension NMEMB (the number of members) and joint errors $\mathbf{e}_{\boldsymbol{I}}$ of dimension NJOINT (the number of joints), and that the best-fit displacement vector d is a linear function of f. Let NNODES denote the number of positions on the surface of the truss where error influences are measured. Let U_{M} (NNODES \times NMEMB) and \mathbf{U}_{J} (NNODES x NJOINT) denote the matrices of influence coefficients. Then $d=U_{M} e_{M}+U_{J} e_{J}$. Concatenating e_{M} with e_{J} and U_{M} with U_{J} yields $d=U e$.

Let D be a positive semidefinite weighting matrix (in our computational experiments we let D be an identity matrix) denoting the relative importance of the surface nodes where distortion is measured. The mean-squared displacement error car: then be written as

$$
d_{r m s}^{2}=e^{T} U^{T} D U e=e^{T} H e
$$

A similar construction can be derived for mean-squared member force error, $\mathrm{s}_{\mathrm{rms}}^{2}$ (see Greene and Haftka (1989). Minimizing d ${ }^{2}$ ($\mathrm{r} \mathrm{s}^{2}$) can be formulated as a combinatorial optimization problem. That is, finding the permutation of the components of e_{M} and e_{J} that minimizes $d_{r m s}^{2}$ (or s^{2}) is equivalent to minimizing $\mathrm{d}_{\mathrm{rms}}^{2}$ (or $\mathrm{s}_{\mathrm{rms}}$) directly. Unfortunately there (NMEMB!)*(NJOINT!) possiblities to consider. Hence, an enumeration scheme is out of the question. However there are many combinatorial optimization problems with exponentially large solution spaces that can be solved by algorithms whose time complexity is bounded by a polynomial function of the problem parameters.

To classify this problem we compare it to a similar combinatorial optimization problem. In particular, when only the member length errors are considered, minimizing $\mathrm{d}_{\mathrm{rms}}^{2}$ is equivalent to
the quadratic assignment problem. The quadratic assignment problem is a well known NPcomplete problem in the operations research literature. Hence, minimizing d is also an NPcomplete problem. Moreover, if a problem is NP-complete it is highly unlikely that an algorithm exists which can determine an optimal solution in polynomial time and, therefore, (polynomial time) heuristic solution techniques should be employed. Greene and Haftka (1989) tested two heuristics of the same type. They use pairwise interchange and triple interchange of the members and joints to reduce $d_{r m s}$. The focus of our research has been the development of a simulated annealing algorithm to reduce $\mathrm{d}_{\mathrm{rms}}^{2}$. The plausibilty of this technique has been its recent success on a variety of NP-complete combinatorial optimization problems including the quadratic assignment problem.

Simulated annealing was first proposed and used in statistical mechanics in the early 1950's (see Metropolis et al. (1953)). However, not until Cerny (1982) was simulated annealing used to solve a NP-complete combinatorial optimization problem--the traveling salesman problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize. As the liquid is cooled slowly the atoms line themselves up and form a pure crystal that is completed ordered. The pure crystal is the minimum energy for this system. The basic procedure consists of a loop over a random displacement generator that produces changes in the objective function value. If this change is negative the displacement is accepted and the objective function is reduced. If this change is non-negative the displacement is accepted probabalistically. That is, uphill climbs are accepted with some positive probability which decreases as the temperature decreases. Simulated annealing must be used with some care. In addition to determining how to generate random displacements, one must also pick a starting temperature T, a cooling rate TFACTR, and a stopping temperature T_{f}. If these parameters are not chosen appropriately simulated annealing may produce poor results and/or run for an exponential amount of time.

Figure 1 is a graph of the objective function value ($\mathrm{d}_{\mathrm{rms}}^{2}$) for ten random starting arrangements of the components of \mathbf{e} for three different heuristics. All computational experiments were done on a MicroVAX. The two interchange heuristic is very fast (an average cpu time of 1.1 minutes per run) but produces widely varying results. The two and three interchange heuristic provides less variability in the final objective function values but runs much more slowly (an average cpu time of 68 minutes per run). Simulated annealing produced the best objective function values for every starting configuration and was faster than the two and three interchange heuristic (an average cpu time of 42 minutes per run).

run number

C

C********** MAIN PROGRAM *************

C

INTEGER NMEMB, NJOINT, NROW
PARAMETER (NMEMB=102, NJOINT=31, NROW=MEMB+NJOINT, NH=19)
INTEGER IORDER (NROW), NDIM
DOUBLE PRECISION H, M, ZQAP,T, TFACTR, ZCHK, PSUM, TSUM
DIMENSION H (NROW, NROW), M (NROW), PSUM (NROW)
\$, DFDE (NW, NROW), DWDE (NW, NROW)
CHARACTER*35 MSG
REAL TIM(20)
OPEN (UNIT = 5, FILE=' QAP2. IN', STATUS=' OLD')
OPEN (UNIT=6, FILE='QAPJNT.OUT', STATUS=' UNKNOWN')
OPEN (UNIT=7, EILE='MTEN.DAT', STATOS='OLD')
c

C
C Read in input data. Influance matrix H=UDU, member
C length errore M, joint diameter errors M, displacement
C derivatives DWDE, force derivativee DFDE, and initial
C objective function value zoap. The input file oap. IN C Is created by GENQAP.FOR.
c

C
DO 21 I=1, NROW
READ (5,901) ($\mathrm{A}(\mathrm{I}, \mathrm{J}), J=1, \mathrm{NROW})$
CONTINUE
DO 20 I=1, NMEMB
$\operatorname{READ}(5,901) \quad(\mathrm{DFDE}(I, J), J=1, \mathrm{NROW})$
CONTINUE
DO $22 \mathrm{I}=1$, NW
READ (5,901) (DWDE (I, J), J=1, NROW)
CONTINUE
DO $2400 \quad J=1,3$
DO $17 I=1$, NROW
IORDER (I) =I
17
c
c
c

C Uze the largest eigenvalue of C to provide a bound on C the difference between the largest and amalleat objective C function values. For this $\mathrm{A}, 9.779335$ 1a the appropriate -lgenvalue
C

```
C
```

$T=0.0$
DO 79 I=1, NROW $T=T+M(I) * M(I)$
CONTINUE
$T=T * 10 * 9.779335$
TFACTR=0.96
FORMAT ($1 \mathbf{X}, \mathrm{~A}$)
FORMAT (1X, 5E16.12)
EORMAT (1X, E16.12)

WRITR (6,*) 'ITERATION '.J
WRITE (6, *) 'Start Temperaturem , T, TFACTR
WRITE (6,*) 'starting zQAP=', ZQAP
CALL SECOND (TIM(J))
WRITE (6,*) 'Execution time', TMM(10+J)-TIM(J)
WRITE $(6, *)$ ' Final annealing objective value , zQAP

CALL OBJCHK (M, IORDER, H, FSUM, NROW, ZCEK)

File: qapjnt.for Printed Wed Jul 12 15:49:06 1989 Login: RRKINC Page: 2


```
                IF (NSUCC.GE.NLIMIT) GOTO 2
    12 CONTINUR
    2
        END DO
        WRITE (6,*) 'NCNT',NCNT
        RETURN
        END
    C
    SUEROUTINE SGPCST (M, A, IORDER, NMEMB, NROW, N, DE)
    C
    C**********************************************************************
    C Thia aubroutine returns the value of the change in the
    objective function for a proposed ewap of two positione
    In the current permutation asalgnment IORDER. On output
    DE in the value of the change (t or -).
C***********************************************************************
C
    INTEGER NMEMB, IORDER (NROW),N(2), I1, JI, K, K1, ITMP
    DOUBLE PRECISION M,H,LTSUM, RTSUM, DIFF,DE,SQDIFF
    DIMENSION M(NROW), F (NROW, NROW)
    C
    C********* initialization
C
    DE=0.0
    RTSUM=0.0
    LTSUM=0.0
    IL=IORDER(N(1))
    J1=IOROER(N(2))
c
C********** put indice: of M in amcending order, Il < Ji
    IF (II.GT.J1) THEN
                    ITMP=I1
                        NTMP=N(1)
                    I1=J1
                    N(1) =N (2)
                    J1=1TMP
                    N(2)=NTMP
    ENDIF
c
C****************************************************************************
C This section of the code computes the change in the objective
C function value, DE, in linesr time. To do thim, polnter array
    IORDRR 1: uaed to keap track of the awitchem in the array M.
    Since only two componente of M are awitched at any one time only
    two rowa and two columns of the matrix H need be considered to
    compute DE.
C****************************************************************************
C
    DO 12 K=1,NROW
            K1=IORDER(K)
            IF (K1.EQ.II.OR.K1.EQ.J1) GOTO 12
                                    LTSUM=LTSUM+H(K,N(2))*M(K1)
                                    RTSUM=RTSUM+R(K,N(1))*M(K1)
    CONTINUE
    DIFF=M(J1)-M(I1)
    SODIFF=(M(J1)**2)-(M(I1)**2)
    DE=(SQDIFF*H(N(1),N(1)))+(2*DIFT*RTSUM)
            -(SQDIFE*G(N(2),N(2)))-(2*DIFF*LTSUM)
        RETURN
        END
c
C
    SURROUTINE SWAP (IORDER,NROW,N)
c
C
C*************************************************************************
C
C This routine performe the actual swap in IORDER between
    poritione N(1) and N(2). On output IORDER ie modified to
    reflect th1: exchange.
c
C************************************************************************
C

File: qapjnt.for Printed Wed Jul 12 15:49:06 1989 Login: RRKINC Page: 4
```

C INTEGER NROW, IONDER (NROW),N(2),ITMP
c
c
ITMP=IORDER (N (1))
IORDER (N (1))=IORDER (N (2))
IORDER(N (2))=ITMP
RETURN
END
c
SURROUTINE METROP(DE,T,ANS)
c
C^**
C Matropolis algorithm. ANS is a logical variable which
iasues a verdict on whether to accept a reconflguration
which laada to change DE in the objective function E.
If DE<O, aNS = .TRUE., while if DE > 0, aNS Ia only
.TRUE. with probability exp(-DE/T), where T 1: a
temperature determined by the annealing echedule.
C***
c
c
DOUBLE PRECISION DE,T
PARAMETER (JDUN=1)
LOGICAL ANS
ANS=(DR.LT.O.O) .OR . (RAN3 (JDUM) .LT.EXP(-DE/T))
RETORN
END
CC
C
FUNCTION RAN3(IDJM)
C
C
C
C Returns a uniform random deviste between 0.0 and 1.0.
C Set IDUM to any negative value to initialize or
C reintialize the eequence. (see Numerical Recipee p. 199)
C
C**
C
c
PARAMETER (MRIG=1000000000,MSEED=161803398,MZ=0,FAC=1./MBIG)
DIMENSION MA(55)
DATA IFF/O/
c
C************Initialization
C
IF(IDUM.LT.O.OR.TFT.EQ.0)THEN
IFF=1
MJ=MSEED -. IABS (IDUM)
MJ=MOD (MJ,MBIG)
MA (55)=M:
MK=1
DO 11 I=2,54
II=MOD (21*I,55)
MA (II) - MK
MR=MS-NR
IT (MR.LT .MZ)MRN\&/K+MGIC
MJ=MA (II)
11 CONTINUE
DO 13 K=1.,4
DO 12 I=1,5s
Ma (I) = MA (I) - MA (1+MOD (I+30,55))
If (MA (I).LTTMO)MA (I) =MA (I) +MEIG
12 CONTINUS
13 CONTINUR
INEXT=0
INEXTP= =31
IDON=1
ENDIF
C
C*********End fnitialization
c
INEXT= INEXT+1
IF (INEXT .EQ . 56) INEXT=1

```
```

INEXTP= INEXTP+1
IF (INEXTP.EQ.56) INEXTP=1
MJ*MA (INEXT) -MA (TNEXTP)
IF (MJ.LTT.MZ)MJ=MJ+MBIG
MA (INEXT) =MS
RAN3=MJ*EAC
RETURN
END
C
SUBROUTINE SECOND (TIM)
TIMRO=0.OE+00
TIM=SECNDS (TIMRO)
RETURN
END
SUBROUTINE OBJCHK (M, IORDER,G,PSUM,NRON, ZCHK)
INTEGER NROW,IORDER, I1,J1
DOUBLE PRECISION ZCRR,M,H,PSUM
DIMENSION M(NROW), H(NROW, NROW), IORDER (NROW), PSUM(NROW)
ZCHR=0.0
DO }5\mathrm{ I=1, NROW
I1=IORDER(I)
PSTM(I)=0.0
DO 4 J=1,NROW
J1=IORDER(J)
PSUM(I) =PSUM(I) +H(I,J)*M(J1)
CONTINUE
2CHK = 2CHK + PSUM(I)*M(II)
CONTINUE
RETURN
END
c
C

```
```

