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Inacuracies in the length of members and the diameters of joints of large truss reflector

backup structures may produce unacceptable levels of surface distortion and member forces•

However, if the member lengths and joint diameters can be measured accurately it is possible to

configure the members and joints so that root-mean-square (rms) surface error and/or rms

member forces is minimized.

Following Greene and Haftka (1989) we assume that the force vector f is linearly

proportional to the member length errors e_ of dimension NMEMB (the number of members) and
M

joint errors eI of dimension NJOINT (the number of joints), and that the best-fit displacement
vector d is a'linear function of f. Let NNODES denote the number of positions on the surface of

the truss where error influences are measured Let U (NNODES x NMEMB) and U (NNODES
• M J

x NJOINT) denote the matrices of influence coefficients. Then d = UMeM+ Ujej. Concatenating eM
withe andU withU yieldsd=Ue.

_et D M rbe a positiv_ semidefinite weighting matrix (in our computational experiments we let

D be an identity matrix) denoting the relative importance of the surface nodes where distortion is

measured. The mean-squared displacement error car: then be written as

d 2 = eTuTDue = eTHe.
r ms

2
A similar construcuon can be derived fog mean-squared member force error, s (see Greene and• _z L rm . . .
Haftka (1989)). Minimizing d (or s ) can be formulated as a combinaton_ optmuzaI_on

rms . rms
pgoblem. That is, finding the permu_auon of _e components of e.. and e. that minimizes d z (or

L L . _ J r ms
s ) is equivalent to rmnimizing d (or s ) directly. Unfortunately there

r ms . ms
(_,_MB !)*(NJOINT!) possiblities to conslc_er. Hence, an enumerataon scheme is out of the

question. However there are many combinatorial optimization problems with exponentially large

solution spaces that can be solved by algorithms whose time complexity is bounded by a

polynomial function of the problem parameters.

To classify this problem we compare it to a similar combinatorial optir_ization problem. In
particular, when only the member length errors are considered, minimizing d- is equivalent to

rms
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thequadraticassignmentproblem. Thequadraticassignmentproblemis a w_!l known NP-
completeproblemin theoperationsresearchliterature. Hence,minimizing if" is alsoanNP-
completeproblem. Moreover,if aproblemis NP-completeit is highly unlikr_hat analgorithm
existswhichcandetermineanoptimalsolutionin polynomial timeand,therefore,(polynomial
time) heuristicsolutiontechniquesshouldbeemployed.GreeneandHaftka (1989)testedtwo

heuristicsof thesametype. Tl_y usepairwiseinterchangeand triple interchangeof the
membersandjoints to reduced- . Thefocusof our researchhasbeenthedevelopmentof a

rm$ z

simulated annealing algorithm to r_..duce d . The plausibilty of this technique has been its
r ms

recent success on a variety of NP-complete combinatorial optimization problems including the

quadratic assignment problem.

Simulated annealing was first proposed and used in statistical mechanics in the early

1950's (see Metropolis et al. (1953)). However, not until Cerny (1982) was simulated annealing

used to solve a NP-complete combinatorial optimization problem--the traveling salesman

problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize.

As the liquid is cooled slowly the atoms line themselves up and form a pure crystal that is

completed ordered. The pure crystal is the minimum energy for this system. The basic

procedure consists of a loop over a random displacement generator that produces changes in the

objective function value. If this change is negative the displacement is accepted and the

objective function is reduced. If this change is non-negative the displacement is accepted

probabalistically. That is, uphill climbs are accepted with some positive probability which

decreases as the temperature decreases. Simulated annealing must be used with some care. In

addition to determining how to generate random displacements, one must also pick a starting

temperature T, a cooling rate TFACTR, and a stopping temperature Tf. If these parameters are
not chosen appropriately simulated annealing may produce poor results and/or run for an

exponential amount of time.
• . 2

Figure 1 is a graph of the objective function value (d ) for ten random starting
r ms.

arrangements of the components of e for three different heunsucs. All computational

experiments were done on a MicroVAX. The two interchange heuristic is very fast (an average

cpu time of 1.1 minutes per run) but produces widely varying results. The two and three

interchange heuristic provides less variability in the f'mal objective function values but runs much

more slowly (an average cpu time of 68 minutes per run). Simulated annealing produced the best

objective function values for every starting configuration and was faster than the two and three

interchange heuristic (an average cpu time of 42 minutes per run).
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C

C

C

C****e***** _N PROGI%AM ******_******

C

INTEGER NME_, NJOINT, NROW

PARAMETER (NI4EMB-102, NJOINTm31, NROW_NME_÷NJOINT, NW_I9)

INTEGER IORDER (NROW), NDIM

DOUBLE PRECISION R, M, ZOAP, T, TFACTR, ZCRK, PSUM, TSUM

DIt_:NSION R (NROW, _OW), M(_OW), PSUN(_ROW)

$, DFDE (NW, NROW), DWDE (NW, NROW)

CHARACTER*35 MSG

REAL TIM (20)

OPEN (UNIT=5, FILE-' QAP2. IN', STATUS-' OLD' )

OPEN (UNIT-6, FILEm' QAPJNT. OOT' , STATUS-' UNKNOWN' )

OPEN (UNIT-7, FILE-' MTEN. DAT', STATUSw' OLD' )

c

C

C Read in input data. Influence matrix BmUDU, member

C length errors M, Joint diameter errors M, dl,placemmnt

C derivatives DWDE, foroe derivatives DFDE, and initial

C objective function value ZQAP. The input rile QAP.ZN

C ks created by GENQAP.FOR.

C

C

DO 21 I-I, NROW

READ(5,901) (R(Z,J),J-I,NROW)

21 CONTINUE

DO 20 I-I,NMEMB

READ (5, 901} (DFDE (I, J), J-l, NROW)

20 CONTINUE

DO 22 I-I,NW

READ (5,901) (DWDE (I, J), J-l, NROW)

22 CONTINUE

DO 2400 JiI,3

DO 17 I_I,NROW

IORDER (I) "I

17 CONTINUE

HAD (7, 901) (M(1), I-l, NROW)

C

READ (7,902) Z_AP

C

READ (7,900) MeG

C

C* eat _*t*t *_*** t t e** _t t*eteeet*et_ _Qtwe_t ***Qt*t*ttttt_tt_e_e_et twm*t

C

C U,o the largest eigenvalue of g to provide a bound on

C the difference between the laEgea_ and mmAlleat objective

C function values. For this H, 9.779335 is the appropriate

C elgenvalue.

C

C

T-O. 0

DO 79 I-I,NROW

T=T÷M (1) *M(I)

79 CeNT INUE

T-T*10*9. 779335

TFACTR-0.96

FORMAT (IX, A)

FORMAT (1X, 5E16.12)

FORMAT ( IX, E16 . 12)

c *****t*** End Inltlallz&tlon and echo results

c

c

C

C

WRITE(6,*) 'ITERATION ',J

WRITE(6,*) 'Start Temperature- ',T, TFACTR

WRITE(6,*) 'Starting Z_-',Z_AP

CALL SECOND (TIM(J))

CALL ANNEAL (M, R, IORDER, NMEMB, NROW, TFACTR, ZQAP, T )

CALL SECOND (TIM(10÷J))

WRITE(6,") 'Execution time ',TIM(IO÷J)-TIM(J)

WRITE (6, *) ' Final annealing objective value ' , ZQAP

CALL OBJCHK (M, IORDER, H, PSUM, NROW, ZCRX)
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2400

C

C

WRITE(6,*) 'Obj. value check ',ZCHK

WRITE(6,*) (IORDER(I),I-1,NROW)

WRITE(6,*) 'Final temperature ',T

CONTINUE

STOP

END

SUBROUTINE ANNEAL(M,R, IORDER, NMEMB,NROW, TFACTR, ZQAP,T)

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Thls algorithm finds the permutation of the oomponenta

of the vector M that mlnlmlzea the product _ for any

real symmetric positive definite matrix R. There are

NROW (NMEMB+NJOINT) components of M and H is NROW by NROW.

The array IORDER(I) specifies the permutation of M. On

input, the elements of IORDER may be set to any permutation

of the numbers i to NROW. This routine will return the best

alternative permutation it can find.

T is the current temparture.

NOVER is the max number of swaps tried at any temperature T.

NLIMIT Is the maK number of successful swaps before continuing.

TFACTR is the anneallng schedulo, TnewmTold*TFACTR.

ZQAP denotes the objective function velue at any time T.

DE denotes the change in ZQAP when two components are swapped.

C

C

INTEGER NMEMB, IORDER(NROW),N(2),NOVER, NLIMIT, I_UM

DOUBLE PRECISION M,R, TFACTR, ZQAP,DE,T, TSUM

DIMENSION M(NROW>,R{NROW, NROW)

LOGICAL ANS

NOVER_I0*NROW

NLIMITRIaNROW

IDUM_-I

NSUCC_I

NCNT=0

NJOINT-NROW-NMEM_

C

C******* Loop until terap_rature is too small or NSUCC-0.

C

DO WHILE (NCNT.LT.600.AND.NSUCC.GT.0}

NCNT-NCNT+I

NSUCC-0

C

C******* Local search of neighborm of current assignment

C

DO 12 KmL,NOVER

C

C******* N(1) and N(2) a:ce the two components of M to be mwapped.

C

IF (RAN3{IDUM).GT.0.76692) THEN

(2) -1+aNT (NJOINT*RAN3 (IDUM))

(I) -I+INT ( (NJOINT-I} *RAN3 (IDUM))

[rF (N(2).EQ.N(I}.AND.N(2).EQ.NJOINT) TRZN

N (i) -N (I) -I

ELSE IF (N(2).EQ.N(1)} TEEN

N(2)mN (2) ÷I

ENDIF

ELSE

END IF

N (2) -I+INT (NMEM_*RAN3 (IDUM))

N (1) -I+INT ((N)_._m-l) *RAN3 (IDUM))

:ZF (N(2}.EQ.N(1).AND.N(2).EQ.NMEMB) THEN

N (1)-N (I} -I

ELSE IF (N(2).EQ.N(1)) TEEN

N (2)-N(2) +I

ENDIF

(:ALL SWPCST (M, R, IORDER, NI_J4B, NROW, N, DE)

CALL METROP (DE, T, ANS)

IF (ANS) THEN

NSUCCmNSUCC ÷ 1

ZQAPmZQAP +DE

CALL SWAP ( IORDF_, NROW, N)

END IF
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I'I' (NSUCC.GE._L_T) GOTO 2

12 CONTINUE

2 T_T*TFACTR

END DO

WRITE (6,*) 'NCNT',NCNT

RETURN

END

C

SUBROUTINE SWPCST (M, H, IORDER, NMEMB, NROW, N, DE)

C

C

C

C This subroutine returns the value of the change In the

C objective function for a proposed swap of two positions

C in the current permutation aeslgTm_nt IORDER. On output

C DE is the value of the change (+ or o).

C

C

C

INTEGER NMEMB, IORDER (NROW) ,N (2) , II, J1, K, K1, IT_

DOUBLE PRECISION H, H, LTSOM, RTSUM, DIPY, DE, SQDIFF

D IMENSION M (NROW), R (NROW, NROW)

C

C********* initialization

C

DE_0.0

RTSUM_0.0

LTSUM=O. 0

II_IORDER (N (I))

JI-IORDER (N (2) }

C

C *******t* put indices of M in ascending order, 71 < Jl

C

IF (II.GT.JI) T_EN

ITMPsII

NTMP-N (i)

I1-Jl

N (I) -N (2)

JI=ITMP

N (2) =NTMP

ENDIF

C

C

C This .ectlon of the code computes the change in the ob_ective

C function value, DE, in linear time. To do thle, a pointer array

C IORDER is used to keep track of the switches in the array M.

C Since only two components of M are switched at an T o_ ti_ only

C two rowe and two columns of the matrix H need be _oneidered to

C compute DE.

C

C

DO 12 K=I,NROW

KI_IORDER (K}

I_ (K1.EQ.II.OR.KI.EQ.JI) GOTO 12

LTSUM-LTSUM÷H (K, N (2)) *M (KI)

RTSOM_RTSUM÷H (K, N (i) ) *M (KI)

12 CONTINUE

0IFFEM (Jl) -M(II)

SQDIFFm (M(JI) *'2) - (M(II) **2)

DE_ (SQDIFF*H (N (I), N (I)) ) ÷ (2*DIFF*RTSUM)

$ - (SQDIFF*H (N (2), N (2)) ) - (2*DIFF*LTSUM)

RETURN

END

SOBROOTINE SWAP (IORDER, NROW, N)

C

C

Ce**e****ee*e*.**e***te*s.e*eeee*e***ee*eeet*e.e*eeeee**es*tsse***te.

C

C This routine performs the actual swap in IORDER between

C positions N(1) and N(2). On output IORDER is modified to

C reflect thle exchange.

C

C*******eee**e*e.e****e*ssesese*.e**eeeeee*eeses.e*****ee..eeeeeee_e.e

C

tO0
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IN_GER I_ROW, ZOI_DER (ICROW) , N (2) , ZT_

ITMP-.IOP,DER (N(I))
IORDER (N (I)) - IOItDFA (N (2))

ZOR.UER(N (2))-ITMP
RETURN

END

S_BROUTINE METROP (DE, T, ANS)

C

C Metropolis •Igozithm. ANS is a loglc•l v•rlable which

C issues • verdict on whether to accept • reconfiguration

C which leads to s change DE in the objective function E.

C If DE<0, ANS - .TRUE., while if DE > 0, ANS is only

C .TRUE. with probability exp(-DE/T), where T is •

C temperature determined by the annealing schedule.

C

C**e_**e*e*e*e*ee*eeeee_eteeeee*eee*teeeeeee*e*eee**e*eQeeeteete

C

C

DOUBLE PRECISION DE,T

PARAMETER (JDUM-I )

LOGICAL ANS

ANS-(DE.LT. 0.0) .OR. (RAN3 (JDUM) .LT.EXP (-DE/T) }

RETURN

END

CC

C

FUNCTION RAN3 (IDUM)

C

C

C

C Returns a unifor_ random deviate between 0.0 and 1.0.

C Set TDUM to any negative value to initialize or

C relntislize the sequence. (see Numerical Recipes p. 19g)

C

C*t***e*et*****ee*e***e*e***e**eteetteteeeee*e**e.eee*tee_.e.eQe.e

C

C

PARAMETER (M_IG_I000000000, MSEED_I61803398, MZ=0, FAC"I./MBIG)

DIM_HS ION MA (55}

DATA IFF /0/

C

C************Init ializat ton

C

IF (IDUM.LT. 0.OR. IZFF.EQ. 0) TREN

IFF-1

MJ-MSEED-IABS (IDa)

MJ-MOD (MJ, MBIG)

MA (SS)-MJ
MK-1

DO 11 I-_,54

_ I-MOD (21"I, 55)

_(TI) -MK

MK-MJ-MK

IF (MK. LT. MZ ) _-_+_IG

MJ-MA (II)

11 CONTINUE

DO 13 Ks], 4

DO 12 I-l, SS

_(1)-Iw_ (I) -M_ (I+MOD (i+30, aS) )

IF (MA(I) .iT .MZ)M_(I) -MA (I) +MBI_

12 CONTINUE

13 CONTINUE

INEXT-0

INEXTP-31

IDUM-1

ENDIF

C

C*********End inlti•llzat ion

C

INEXT=INEXT+I

IF (INEXT .EQ. 56) INEXT-I

I01
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I'VE XTP = INE X'l_ ÷ 1

IF (INEXTP .EQ. 56) INEXTP-1

MJ=MA (T_tEXT) -MA (r_XTP l

IF (MJ. LT. MZ) MJmMJ+MB IG

HA (INEXT) =MJ

RAN3=MJ*FAC

RETURN

END

SUBROUTINE SECOND (TIM)

TIME0=0.0E+00

T IM_SECNDS (TIME0)

RETURN

E_D

Sit,ROUT INE OBJCRK (M, IORDER, R, PSUM, I_ROW, ZCRK)

INTEGER NROW, IORDER, If, Jl

DOUBLE PRECISION ZCHK, M, H° PSUM

DIMENSION M (NROW) , H (NROW, NROW) , IORDER (NROW) ,PSUM (NROWI

ZCHK=0.0

DO 5 IsI,NROW

11,, IORDER (I)

PSUM(I) =0.0

DO 4 J,,I,NROW

JI--IORDER (J)

PSUM(I),=PSUM(I) +R (I, J) *M(JI)

CONTINUE

ZCHK - ZCHK + PSUM(I)*M(II)

CONT INUB

_TURN

END
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