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Simulated Annealing
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Professor Rex K. Kincaid
Mathematics Department
The College of William and Mary
Williamsburg, VA 23185

Inacuracies in the length of members and the diameters of joints of large truss reflector
backup structures may produce unacceptable levels of surface distortion and member forces.
However, if the member lengths and joint diameters can be measured accurately it is possible to
configure the members and joints so that root-mean-square (rms) surface error and/or rms
member forces is minimized.

Following Greene and Haftka (1989) we assume that the force vector f is linearly
proportional to the member length errors e, = of dimension NMEMB (the number of members) and
joint errors e of dimension NJOINT (the number of joints), and that the best-fit displacement
vectord is a {incar function of f. Let NNODES denote the number of positions on the surface of
the truss where error influences are measured. Let UM (NNODES x NMEMB) and UJ (NNODES
x NJOINT) denote the matrices of influence coefficients. Thend =U_ e + U e . Concatenating e

. . . MM T M
with e_ and UM with UI yields d = Ue.

II,et D be a positive semidefinite weighting matrix (in our computational experiments we let
D be an identity matrix) denoting the relative importance of the surface nodes where distortion is
measured. The mean-squared displacement error car: then be written as

d2 = eTUTDUe = eTHe.

rms

A similar construction can be derived foi mean-squared member force error, sfm (see Greene and
Haftka (1989)). Minimizing d (ors ) can be formulated as a combinatongl optimizagjon
pioblem. That is, finding the prerpn%u ation of the components of e and e_ that minimizes dE (or
S )isequivalent to minimizing d (ors  )directly. Unfortunately there
(HR/?EMB!)*(NJOINT!) possiblitif:srtrcr)]sconsiéc;}'].S Hence, an enumeration scheme is out of the
question. However there are many combinatorial optimization problems with exponentially large
solution spaces that can bhe solved by algorithms whose time complexity is bounded by a
polynomial function of the problem parameters.

To classify this problem we compare it to a similar combinatorial optix?ization problem. In
particular, when only the member length errors are considered, minimizing dr ms is equivalent to

rms
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the quadratic assignment problem. The quadratic assignment problem is a well known NP-
complete problem in the operations research literature. Hence, minimizing di is also an NP-
complete problem. Moreover, if a problem is NP-complete it is highly unhkclmthat an algorithm
exists which can determine an optimal solution in polynomial time and, therefore, (polynomial
time) heuristic solution techniques should be employed. Greene and Haftka (1989) tested two
heuristics of the same type. They use pairwise interchange and triple interchange of the
members and joints to reduce d s . The focus of our research has been the development of a
simulated annealing algorithm to reduce dr . The plausibilty of this technique has been its
recent success on a variety of NP-complete combmatonal optimization problems including the
quadratic assignment problem.

Simulated annealing was first proposed and used in statistical mechanics in the early
1950’s (see Metropolis et al. (1953)). However, not until Cerny (1982) was simulated annealing
used to solve a NP-complete combinatorial optimization problem--the traveling salesman
problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize.
As the liquid is cooled slowly the atoms line themselves up and form a pure crystal that is
completed ordered. The pure crystal is the minimum energy for this system. The basic
procedure consists of a loop over a random displacement generator that produces changes in the
objective function value. If this change is negative the displacement is accepted and the
objective function is reduced. If this change is non-negative the displacement is accepted
probabalistically. That is, uphill climbs are accepted with some positive probability which
decreases as the temperature decreases. Simulated annealing must be used with some care. In
addition to determining how to generate random displacements, one must also pick a starting
temperature T, a cooling rate TFACTR, and a stopping temperature T.. If these parameters are
not chosen appropriately simulated annealing may produce poor results and/or run for an
exponential amount of time. 2

Figure 1 is a graph of the objective function value (d ) for ten random starting
arrangements of the components of e for three different hetmstics. All computational
experiments were done on a MicroVAX. The two interchange heuristic is very fast (an average
cpu time of 1.1 minutes per run) but produces widely varying results. The two and three
interchange heuristic provides less variability in the final objective function values but runs much
more slowly (an average cpu time of 68 minutes per run). Simulated annealing produced the best
objective function values for every starting configuration and was faster than the two and three
interchange heuristic (an average cpu time of 42 minutes per run).
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INTEGER NMEMB, NJOINT, NROW

PARAMETER (NMEMB=102, NJOINT=31, NROW=NMEMB +NJOINT, NWm1 9)
INTEGER IORDER (NROW),NDIM

DOUBLE PRECISION H,M, 2QAP,T, TFACTR, ZCHK, PSUM, TSUM
DIMENSION H(NROW, NROW), M(NROW), PSUM (NROW)

$,DFDE (NW, NROW) , DWDE (NW, NROW)

CHARACTER*3S MSG

REAL TIM(20)

OPEN (UNIT=5, FILE='QAP2.IN’, STATUS='OLD’ )

OPEN (UNIT=6,FILE=’QAPJNT.OUT’, STATUS=’ UNKNOWN' )
OPEN (UNIT=7, FILE=’MTEN.DAT’, STATUS='OLD’ )]

't'*ﬁ'ﬁ*ttttitﬂ'i*i't'"ii*t"’.*ﬁ't'it.ﬁi't*.'ﬁﬁit".t'ﬁﬁ*it".t'tttf

Read in input data. Influence matrix H=UDU, member
length errors M, joint diameter errors M, displacement
darivatives DWDE, force derivatives DFDE, and initial
objactive function value ZQAP. The input file QAP.IN
1s createad by GENQAP.FOR.

tﬁ*Q**tt*tﬁ.tﬁﬁttQQ'*ﬁﬂ.'ﬁ'ttittttttwitQ.ittﬁttititﬂ'ﬁti'ﬁtt"it!'t*tf

DO 21 I=1, NROW

READ (5,901) (H(I,J),J=1,NROW)
CONTINUE
DO 20 I=1, NMEMB

READ (5, 901) (DFDE(I,J),J=1, NROW)
CONTINUE
DO 22 I=1 NW

READ (5, 901) (OWDE (I, J), J=1, NROW)
CONTINUE
DO 2400 J=1,3

DO 17 Iw=l, NROW

IORDER (I)=I
CONTINUE
READ (7, 901) (M(I), I=1, NRCW)

READ (7, 902) ZQAP

READ (7, 900) MSG

Qﬁ'..*'ﬁﬁ"it'..ﬂﬁtﬂ""*’f."""...ﬂ'ﬁ....QQ"ﬁ."""'.."ﬁ..ﬁ"'.

Use the largest sigenvalue of H to provide a bound on

the difference batween the largest and smallest objective
function values. For this H, 9.779325 ia the appropriate

eigenvalue.

tttiﬁtﬁﬁt'ﬁﬂi!ti.QttQﬁ.ﬁQttt*Qtiiﬁ"tQﬁt'Qttt.ﬁ.tt'iﬁ't"i.*’ﬁttﬁ'ﬁitt

T=0.0

DO 79 I=1, NROW
T=T+M(I) *M(I)

CONTINUR

T=T*10%9.779335

TFACTR=0.96

FORMAT (1X, A)

FORMAT (1X, 5E16.12)

FORMAT (1X,R16.12)

crewmreast End initialization and acho results

c
a

WRITE (6, *) ’ITERATION /,J
WRITE(6,*) ’'Start Temperature= ' T, TFACTR
WRITE (6, *) "Starting ZQAP=’, ZQAP

CALL SECOND (TIM(J))

CALL ANNEAL (M, H, IORDER, NMEMB, NROW, TFACTR, ZQAP, T)

CALL SECOND (TIM(10+J))
WRITE(6,*) ‘'Execution time ", TIM(10+J) -TIM(J)

WRITE (6, *) 'Final annealing objective value ', ZQAP

CALL OBJCHK (M, IORDER, H, PSUM, NROW, ZCHK)
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WRITE(6,*) ‘Obj. value check ’',2ZCHK

WRITE(6,*) (IORDER(I),I=1, NROW)

WRITE(6,*) ’‘Final temperature ’,7T
2400 CONTINUE

sTOP
END
[of
c
Cc
SUBROUTINE ANNEAL (M, H, IORDER, NMEMB, NROW, TFACTR, ZQAR, T)
C
C
ct'ttQﬁt*tti*tfti*ttﬁﬁiﬁtwtttti'titt.tt'ttttttit*.tt*tti'.'.'t.'.t*tt"
Cc
c This algorithm finds the permutation of the components
[of of the vector M that minimizes the product MHM for any
(o] real symmetric positive definite matrix H. There are
[of NROW (NMEMB+NJOINT) components of M and H is NROW by NROW.
[of The array IORDER(I) specifies the permutation of M. On
o} input, the elements of IORDER may be set to any permutation
(o of the numbers 1 to NROW. This routine will return tke best
o] alternative permutation it can find.
c
[of T is the current temparture.
¢} NOVER is the max number of swapas tried at any temparature T.
[of NLIMIT is the max number of successful swaps before continuing.
(o} TFACTR is the annealing schedule, TnewaTold*TFACTR.
(o} ZQAP denotes the objective function value at any time T.
[ DE denotes the change in ZQAP when two components are swapped.
gﬁtiﬁttttti*iitt'ttﬁtttﬁ 2332222233222 222832222222 X222 2 20 X222 222l sl
c
Cc

INTEGER NMEMB, IORDER (NROW) , N (2) , NOVER, NLIMIT, I0UM
DOUBLE PRECISION M, H, TFACTR, ZQAP, DR, T, TSUM
DIMENSION M(NROW!, H{NROW, NROW)}

LOGICAL ANS

NOVER=10*NROW
NLIMIT=1*NROW
IDUM~-1
NSUCC=1
NCNT=0
NJOINT=NROW-NMEM3
(o
Cr¥eda** Loop until temparature is too small or NSUCC=),
[of
DO WHILE (NCNT.L'T.600.AND.NSUCC.GT.0)
NCNT=NCNT+1
NSUCC=0
[+
Crawxnx* L ocal search of neighbors of current assignment
Cc
DO 12 Kw=1,NOVER
[«
Crexeax® N(1) and N(2) are the two components of M to bae swapped.
[of

IF (RANJ(IDUM) .GT.0.76692) THEN
H(2)=1+INT (NJOINT*RAN3 (IDUM))
N (1) =1+INT( (NJOINT-1) *RAN3 (IDUM))
TF (N(2) .EQ.N(1) .AND.N(2) .EQ.NJOINT) THEN
N(1)=N(1)-1
ELSE IF (N(2).EQ.N(1l)) THEN

N(2)=N(2)+1
ENDIF
ELSE
N (2) =14INT (NMEMR*RAN3 (IDUM) )
N (1) =1+INT ( (NMEMB-1) *RAN3 (IDUM))
IF (N(2).BEQ.N(1) .AND.N(2) .EQ.NMEMB) THEN
N(1)=N{1)-1
FLSE IF (N(2) .EQ.N(1)) THEN
N(2)=N(2)+1
ENDIF
ENDIF

CALL SWPCST (M, H, IORDER, NMF.MB, NROW, N, DR)
CALL MERTROP (DE, T, ANS)
IF (ANS) THEN
NSUCCwNSUCC+1
ZQAP=2QAP+DE
CALL SWAP (IORDFR, NROW, N)

ENDIF 99 ORIGINAL PAGE IS
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IF (NSUCC.GE.NLIMIT) GOTO 2

12 CONTINUR
2 T=T*TFACTR
END DO
WRITE (6, *) ’NCNT’,NCNT
RETURN
END
[
SUBROUTINR SWPCST (M, H, IORDER, NMEMB, NROW, N, DE)
[od
o4
ci*.ﬁt*"tttitttt.'t'ﬂ.i't'.ttitt.'ﬂt.*t'ﬂt't'ti.*t'ttl'tt.Qt..'ttti.ﬁ
Cc
[of This aubroutine returns the value of the change in the
(o] objective function for a proposed swap of two positions
(o] in the current permutation assignment IORDER. On output
[o4 DE is the value of the change (+ or -).
gt.tﬁtﬁQ'tt**ittii't.t"Q'ttt’tittttﬁ**t'i'i't"ttt.tt'ﬁﬁtﬁtitttiit'.t
c
[of

INTEGER NMEMB, IORDER (NROW),N(2),I1,J1,K, K1, ITMP
DOUBLE PRECISION M, H, LTSUM, RTSUM, DIFF,DE, SQDIFF
DIMENSION M (NROW), H(NROW, NROW)

(o4

Crasnnssns injtialization

(o]
DE=0.0
RTSOM=0.0
LTSUM=0.0
I1=IORDER (N(1))
J1=IORDER (N (2))

c

Craxaxans® put indices of M in ascending order, Il < J1

(o
IF (I1.GT.J1) THEN

IT™P=I1

NTMP=N (1)

Il=J1l

N(1l)=N(2)

J1=ITMP

N(2)=NTMP

ENDIF

c
ct*ﬁt*'*tﬂtttitt*Qt"t*tﬁﬁ"t"t.t"tttttﬁt.Qtttﬁﬁﬁi.ti.i*.'.'tt'*t**t*i
[of
C This section of the code computes the change in the objactive
c function value, DE, in linear time. To do this, a pointer array
[of ICRDER 1is used to keep track of tha switchea in the array M.
[of Since only two components of M are switched at any one time enly
c two rows and two columns of the matrix H need be considered to
o compute DE.
Cc
cttnitiﬁt'ﬁtt.t'Qt.Qtﬁ..*t'.tt’ﬁ"tt't‘tt"'t'.tttt'tt"t*i.tt.t'tt*"t'
c

DO 12 K=1, NROW
K1=IORDER (K)
IF (K1.EQ.I1.O0R.K1.EQ.Jl) GOTO 12
LTSUM=LTSUM+H (K, N(2)) *M (K1)
RTSUM=RTSUM+H (X, N(1)) *M(K1)
12 CONTINUR
DIFF=M(J1) -M(I1)
SQDIFF= (M{J1) **2) - (M(I1) *=2)
DE=(SQDIFF*H (N (1) ,N(1))) +(2*DIFF*RTSUM)

$ - (SQDIFF*H(N(2),N(2)))~ (2*DIFF*LTSUM)

RETURN

END
o]
C

SUBROUTINE SWAP (IORDERR, NROW, N)
c
[of
(s bbb b A L L T Y YT T T T YT U ur s
C
[of This routine performs the actual swap in IORDER between

positions N(1l) and N{2). On output IORDER is modified to
reflect this exchange.

Qtﬂ*'tttitQtttittitﬁ"’i'.ﬁttt*t'."ft'.'i'Qti.'ﬁt"."t.."...t.tﬁ"
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(o4

INTEGER NROW, IORDER (NROW) , N (2}, IT™MP
(o4
C

ITMP=IORDER (N (1))

IORDER (N (1) ) =IORDER (N (2))

IORDER (N (2) ) =ITMP

RETURN

END
[of
o]

SUBROUTINE METROP (DE, T, ANS)
C
C
ctt*ttt"Qt’tt'ttittiﬁtttttiﬁtiiﬁtittﬁ..'tﬁﬁf.ﬁi"""ii*.'ﬁtt'i
C
C Metropolis algorithm. ANS is a logical variable which
c issues a verdict on whether to accept a reconfiguration
c which leads to & change DE in the objective function E.
c If DE<O, ANS = ,TRUE., while if DE > 0, ANS is only
c .TRUE. with probability exp(-DE/T), where T is a
c temperature determined by the annealing schedule.
(o]
CRARRRA AR RN ARA AN AR AN AR TN A R AR AAR A A AN AARA AR RN A A AR AT AN AT RN AN
[o4
o]

DOUBLE PRECISION DE,T

PARAMETER (JDUM=1)

LOGICAL ANS

ANS=(DE.LT.0.0) .OR. (RAN3 (JDUM) .LT.EXP (-DE/T))

RETURN
END
ccC
(o4
FUNCTION RAN3 (IDUM)
o]
(o
CRAA R AR A AR AR AR RARAARRR AN R AR AR IR AR AR ARANOAANRARARA R AN AR A AR R RN
(o
c Returns a uniform random deviate between 0.0 and 1.0.
[of Set IDUM to any negative value to initialize or
c reintialize the sequence. (see Numerical Recipas p. 199)
C
CRA R AR R AR A RR AR A AR R R AN AR AR R AN R ANRAANNANANANARA AN AR RPN RAT®
(o
c

PARAMETER (MBIG=1000000000, MSEED=161803398,6 MZ=0), FAC=1./MBIG)
DIMENSION MA(S5)
DATA IFF /0/

c
Caxakwranwwnslnitialization
c
IF (IDUM.LT.0.OR.IFF.EQ.0) THEN
IFF=1
MJI=MSEED-IABS (IDUM)
MJ=MOD (M.7, MBIG)
MA(55) =M.f
MKw=1
DO 11 I=i, 54
II=MOD(21*I,55)
MA(II)=MK
MK=MT - MK
I¥ (MK.LT MZ)MK=MK+MBIG
MJ=MA (II)
11 CONTINUE
DO 13 K=], 4
0o 12 I=1,5S
MA (I)=MA(I)-MA(1+MOD (I+30,55))
IF (MA(I) .LT.MZ)MA(I)=MA(I) +MBIG
12 CONTINUR :
13 CONTINUR
INEXT=0
INEXTP=31
IDUM=1
ENDIF
(o
CrwasrawsssEnd {initialization
c
INEXT=INEXT+1

IF (INEXT.EQ.56) INEXT=1
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INEXTP=INEXTP+1

IF (INEXTP.EQ.56) INEXTP=1
MJ=MA (INEXT) -MA (INEXTP)
IF (MJ.LT.M2Z)MI=sMI+MBIG
MA {INEXT) =MJ

RAN3I=MJ*FAC

RETURN

END

SUBROUTINE SECOND (TIM)
TIMEO=0.0E+00
TIM=SECNDS (TIMEO)
RETURN

END

SUBROUTINE OBJCHK (M, IORDER, H, PSUM, NROW, ZCHK)

INTEGER NROW, ICRDER, I1,J1
DOUBLE PRECISION ZCHK, M, H,PSUM
DIMENSION M(NROW), H(NROW, NROW) , IORDER (NROW) , PSUM (NROW)

ZCHK=0 . 0
DO 5 I=1, NROW
I1=IORDER(I)
PSUM(I)=0.0
DO 4 J=1,NROW
J1=IORDER (J)
PSUM(I)=PSUM(I)+H (X, J) *M(J1)

CONTINUE

ZCHK = 2CHK + PSUM(IX)*M(Il)
CONTINUE
RETURN
END
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