51 research outputs found

    Lifelongα-tocopherol supplementation increases the median life span of C57BL/6 mice in the cold but has only minor effects on oxidative damage

    Get PDF
    The effects of dietary antioxidant supplementation on oxidative stress and life span are confused. We maintained C57BL/6 mice at 7 ± 2°C and supplemented their diet with α-tocopherol from 4 months of age. Supplementation significantly increased (p = 0.042) median life span by 15% (785 days, n = 44) relative to unsupplemented controls (682 days, n = 43) and also increased maximum life span (oldest 10%, p = 0.028). No sex or sex by treatment interaction effects were observed on life span, with treatment having no effect on resting or daily metabolic rate. Lymphocyte and hepatocyte oxidative DNA damage and hepatic lipid peroxidation were unaffected by supplementation, but hepatic oxidative DNA damage increased with age. Using a cDNA macroarray, genes associated with xenobiotic metabolism were significantly upregulated in the livers of female mice at 6 months of age (2 months supplementation). At 22 months of age (18 months supplementation) this response had largely abated, but various genes linked to the p21 signaling pathway were upregulated at this time. We suggest that α-tocopherol may initially be metabolized as a xenobiotic, potentially explaining why previous studies observe a life span extension generally when lifelong supplementation is initiated early in life. The absence of any significant effect on oxidative damage suggests that the life span extension observed was not mediated via any antioxidant properties of α-tocopherol. We propose that the life span extension observed following α-tocopherol supplementation may be mediated via upregulation of cytochrome p450 genes after 2 months of supplementation and/or upregulation of p21 signaling genes after 18 months of supplementation. However, these signaling pathways now require further investigation to establish their exact role in life span extension following α-tocopherol supplementation

    Life-long vitamin C supplementation in combination with cold exposure does not affect oxidative damage or lifespan in mice, but decreases expression of antioxidant protection genes

    Get PDF
    Abstract Oxidative stress is suggested to be central to the ageing process, with endogenous antioxidant defence and repair mechanisms in place to minimize damage. Theoretically, supplementation with exogenous antioxidants might support the endogenous antioxidant system, thereby reducing oxidative damage, ageing-related functional decline and prolonging life-and health-span. Yet supplementation trials with antioxidants in animal models have had minimal success. Human epidemiological data are similarly unimpressive, leading some to question whether vitamin C, for example, might have pro-oxidant properties in vivo. We supplemented cold exposed (7 AE 2 8C) female C57BL/6 mice over their lifespan with vitamin C (ascorbyl-2-polyphosphate), widely advocated and self administered to reduce oxidative stress, retard ageing and increase healthy lifespan. No effect on mean or maximum lifespan following vitamin C treatment or any significant impact on body mass, or on parameters of energy metabolism was observed. Moreover, no differences in hepatocyte and lymphocyte DNA oxidative damage or hepatic lipid peroxidation was seen between supplemented and control mice. Using a DNA macroarray specific for oxidative stress-related genes, we found that after 18 months of supplementation, mice exhibited a significantly reduced expression of several genes in the liver linked to free-radical scavenging, including Mn-superoxide dismutase. We confirmed these effects by Northern blotting and found additional down-regulation of glutathione peroxidase (not present on macroarray) in the vitamin C treated group. We suggest that high dietary doses of vitamin C are ineffective at prolonging lifespan in mice because any positive benefits derived as an antioxidant are offset by compensatory reductions in endogenous protection mechanisms, leading to no net reduction in accumulated oxidative damage.

    Monitoring Guidance for Underwater Noise in European Seas- Part II: Monitoring Guidance Specifications

    Get PDF
    This document has been prepared by the Technical Subgroup on Underwater Noise and other forms of Energy (TSG Noise), established in 2010 by the Marine Directors, i.e. the representatives of directorates or units in European Union Member States, Acceding Countries, Candidate Countries and EFTA Member States dealing with or responsible for marine issues. In December 2011, the Marine Directors requested the TSG Noise to provide monitoring guidance that could be used by Member States in establishing monitoring schemes to meet the needs of the Marine Strategy Framework Directive indicators for underwater noise in their marine waters. This document presents the recommendations and information needed to commence the monitoring required for underwater noise.JRC.H.1-Water Resource

    Monitoring Guidance for Underwater Noise in European Seas - Part I: Executive Summary

    Get PDF
    This document has been prepared by the Technical Subgroup on Underwater Noise and other forms of Energy (TSG Noise), established in 2010 by the Marine Directors, i.e. the representatives of directorates or units in European Union Member States, Acceding Countries, Candidate Countries and EFTA Member States dealing with or responsible for marine issues. In December 2011, the Marine Directors requested the TSG Noise to provide monitoring guidance that could be used by Member States in establishing monitoring schemes to meet the needs of the Marine Strategy Framework Directive indicators for underwater noise in their marine waters. This document presents the key conclusions and recommendations that support the implementation of the practical guidance to commence the monitoring required for underwater noise.JRC.H.1-Water Resource

    Ten new insights in climate science 2023

    Get PDF
    Non-technical summary. We identify a set of essential recent advances in climate change research with high policy relevance, across natural and social sciences: (1) looming inevitability and implications of overshooting the 1.5°C warming limit, (2) urgent need for a rapid and managed fossil fuel phase-out, (3) challenges for scaling carbon dioxide removal, (4) uncertainties regarding the future contribution of natural carbon sinks, (5) intertwinedness of the crises of biodiversity loss and climate change, (6) compound events, (7) mountain glacier loss, (8) human immobility in the face of climate risks, (9) adaptation justice, and (10) just transitions in food systems. Technical summary. The Intergovernmental Panel on Climate Change Assessment Reports provides the scientific foundation for international climate negotiations and constitutes an unmatched resource for researchers. However, the assessment cycles take multiple years. As a contribution to cross- and interdisciplinary understanding of climate change across diverse research communities, we have streamlined an annual process to identify and synthesize significant research advances. We collected input from experts on various fields using an online questionnaire and prioritized a set of 10 key research insights with high policy relevance. This year, we focus on: (1) the looming overshoot of the 1.5°C warming limit, (2) the urgency of fossil fuel phase-out, (3) challenges to scale-up carbon dioxide removal, (4) uncertainties regarding future natural carbon sinks, (5) the need for joint governance of biodiversity loss and climate change, (6) advances in understanding compound events, (7) accelerated mountain glacier loss, (8) human immobility amidst climate risks, (9) adaptation justice, and (10) just transitions in food systems. We present a succinct account of these insights, reflect on their policy implications, and offer an integrated set of policy-relevant messages. This science synthesis and science communication effort is also the basis for a policy report contributing to elevate climate science every year in time for the United Nations Climate Change Conference. Social media summary. We highlight recent and policy-relevant advances in climate change research – with input from more than 200 experts

    Effect of remote ischaemic conditioning on clinical outcomes in patients with acute myocardial infarction (CONDI-2/ERIC-PPCI): a single-blind randomised controlled trial.

    Get PDF
    BACKGROUND: Remote ischaemic conditioning with transient ischaemia and reperfusion applied to the arm has been shown to reduce myocardial infarct size in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI). We investigated whether remote ischaemic conditioning could reduce the incidence of cardiac death and hospitalisation for heart failure at 12 months. METHODS: We did an international investigator-initiated, prospective, single-blind, randomised controlled trial (CONDI-2/ERIC-PPCI) at 33 centres across the UK, Denmark, Spain, and Serbia. Patients (age >18 years) with suspected STEMI and who were eligible for PPCI were randomly allocated (1:1, stratified by centre with a permuted block method) to receive standard treatment (including a sham simulated remote ischaemic conditioning intervention at UK sites only) or remote ischaemic conditioning treatment (intermittent ischaemia and reperfusion applied to the arm through four cycles of 5-min inflation and 5-min deflation of an automated cuff device) before PPCI. Investigators responsible for data collection and outcome assessment were masked to treatment allocation. The primary combined endpoint was cardiac death or hospitalisation for heart failure at 12 months in the intention-to-treat population. This trial is registered with ClinicalTrials.gov (NCT02342522) and is completed. FINDINGS: Between Nov 6, 2013, and March 31, 2018, 5401 patients were randomly allocated to either the control group (n=2701) or the remote ischaemic conditioning group (n=2700). After exclusion of patients upon hospital arrival or loss to follow-up, 2569 patients in the control group and 2546 in the intervention group were included in the intention-to-treat analysis. At 12 months post-PPCI, the Kaplan-Meier-estimated frequencies of cardiac death or hospitalisation for heart failure (the primary endpoint) were 220 (8·6%) patients in the control group and 239 (9·4%) in the remote ischaemic conditioning group (hazard ratio 1·10 [95% CI 0·91-1·32], p=0·32 for intervention versus control). No important unexpected adverse events or side effects of remote ischaemic conditioning were observed. INTERPRETATION: Remote ischaemic conditioning does not improve clinical outcomes (cardiac death or hospitalisation for heart failure) at 12 months in patients with STEMI undergoing PPCI. FUNDING: British Heart Foundation, University College London Hospitals/University College London Biomedical Research Centre, Danish Innovation Foundation, Novo Nordisk Foundation, TrygFonden

    The role of temporal, spatial and kin associations in grey seal breeding colonies

    Get PDF
    corecore