62 research outputs found

    Antioxidant activity in a set of sorghum landraces and breeding lines

    Get PDF
    Sorghum (Sorghum bicolor L) is becoming an increasingly important crop in the developed world especially as a cereal grain option for patients with celiac disease, being also characterized by a high level of bioactive compounds. It is a good source of phenolic compounds, including phenolic acids, flavonoids and condensed tannins, that express antioxidant capacity and potential health benefits. A group of 210 sorghum genotypes was evaluated in terms of physical parameters and resulted to be characterized by a wide range of 1000-seeds weight (6.93 - 42.67 g) and kernel colour. A sub-set of 121 samples were selected by near infrared spectroscopy for chemical analyses, and revealed a wide range of variability for total antioxidant capacity (6.89 - 172.02 mmol TE kg-1 dm-1), phenols (0.60 - 20.73 g GAE kg-1 dm-1), condensed tannins (0 - 28,362.63 μg CE g-1 dm-1) and flavonoids (0 - 8,138.22 μg CE g-1 dm-1). A high negative correlation was observed between antioxidant compounds and the colour parameters L* and b*; on the contrary, correlation of the same parameters with a* was low and positive. The results of these preliminary analyses highlighted genotypes characterized by light-coloured grains (white or yellow), large seeds, high antioxidant properties but absence of condensed tannins, all traits which make them suitable for food industry

    Evaluation of ear rot (Fusarium verticillioides) resistance and fumonisin accumulation in Italian maize inbred lines

    Get PDF
    Mycotoxin contamination of maize (Zea mays L.) grain is a global threat to the safety of both human food and animal feed. Hence, the development of maize genotypes with reduced mycotoxin accumulation in grain is of major importance. In order to find maize germplasm sources of resistance to Fusarium ear rot, 34 Italian and six public inbred lines were evaluated by means of artificial inoculation in field experiments during 2009 and 2010. Relationships between ear rot and fumonisin concentration in the ears were investigated. Primary ears were challenged with a mixture of two Fusarium verticillioides isolates from Northern Italy, through kernel inoculation, and ear rot severity was assessed.The average number of visibly infected kernels per ear, after inoculation, ranged from 2 to 68 in 2009 and from 0 to 120 in 2010. Fumonisin concentrations in the inoculated ears were greater than in the experimental controls for both years. Variability was found between the inbred lines: fumonisin accumulation ranged from 0.56 to 240.83 mg kg-1 in 2009 and from 1.09 to 190.60 mg kg-1 in 2010. In both years, six inbred lines showed high fumonisin content (≥100 mg kg-1), while the other genotypes were almost equally split into two groups, low (≤10 mg kg-1) and medium (from 11 to 100 mg kg-1) fumonisin content. The number of infected kernels after artificial inoculation correlated with fumonisin concentration both in 2009 (r = 0.94; P≤0.01) and 2010 (r = 0.67; P≤0.01). Additionally, the percentage of internally infected kernels correlated positively with fumonisin concentration (r = 0.37; P≤0.01) and with the number of infected kernels (r = 0.29; P≤0.05). This research has demonstrated that Italian maize germplasm is a valid source of resistance to Fusarium ear rot. Furthermore, there is a strong association of visible Fusarium symptoms with fumonisin concentration, suggesting that selection in maize for reduced visible moulds should reduce the risk of mycotoxin contamination

    Binding Specificity of Sea Anemone Toxins to Nav 1.1-1.6 Sodium Channels UNEXPECTED CONTRIBUTIONS FROM DIFFERENCES IN THE IV/S3-S4 OUTER LOOP

    Get PDF
    Sea anemones are an important source of various biologically active peptides, and it is known that ATX-II from Anemonia sulcata slows sodium current inactivation. Using six different sodium channel genes (from Nav1.1 to Nav1.6), we investigated the differential selectivity of the toxins AFT-II (purified from Anthopleura fuscoviridis) and Bc-III (purified from Bunodosoma caissarum) and compared their effects with those recorded in the presence of ATX-II. Interestingly, ATX-II and AFT-II differ by only one amino acid (L36A) and Bc-III has 70% similarity. The three toxins induced a low voltage-activated persistent component primarily in the Nav1.3 and Nav1.6 channels. An analysis showed that the 18 dose-response curves only partially fit the hypothesized binding of Lys-37 (sea anemone toxin Anthopleurin B) to the Asp (or Glu) residue of the extracellular IV/S3-S4 loop in cardiac (or nervous) Na+ channels, thus suggesting the substantial contribution of some nearby amino acids that are different in the various channels. As these channels are atypically expressed in mammalian tissues, the data not only suggest that the toxicity is highly dependent on the channel type but also that these toxins and their various physiological effects should be considered prototype models for the design of new and specific pharmacological tools

    Traditional Foods From Maize (Zea mays L.) in Europe

    Get PDF
    Maize (Zea mays L.) is one of the major crops of the world for feed, food, and industrial uses. It was originated in Central America and introduced into Europe and other continents after Columbus trips at the end of the 15th century. Due to the large adaptability of maize, farmers have originated a wide variability of genetic resources with wide diversity of adaptation, characteristics, and uses. Nowadays, in Europe, maize is mainly used for feed, but several food specialties were originated during these five centuries of maize history and became traditional food specialties. This review summarizes the state of the art of traditional foodstuffs made with maize in Southern, South-Western and South-Eastern Europe, from an historic evolution to the last research activities that focus on improving sustainability, quality and safety of food production

    PMCA-based detection of prions in the olfactory mucosa of patients with Sporadic Creutzfeldt-Jakob Disease

    Get PDF
    Sporadic Creutzfeldt-Jakob disease (sCJD) is a rare neurodegenerative disorder caused by the conformational conversion of the prion protein (PrPC) into an abnormally folded form, named prion (or PrPSc). The combination of the polymorphism at codon 129 of the PrP gene (coding either methionine or valine) with the biochemical feature of the proteinase-K resistant PrP (generating either PrPSc type 1 or 2) gives rise to different PrPSc strains, which cause variable phenotypes of sCJD. The definitive diagnosis of sCJD and its classification can be achieved only post-mortem after PrPSc identification and characterization in the brain. By exploiting the Real-Time Quaking-Induced Conversion (RT-QuIC) assay, traces of PrPSc were found in the olfactory mucosa (OM) of sCJD patients, thus demonstrating that PrPSc is not confined to the brain. Here, we have optimized another technique, named protein misfolding cyclic amplification (PMCA) for detecting PrPSc in OM samples of sCJD patients. OM samples were collected from 27 sCJD and 2 genetic CJD patients (E200K). Samples from 34 patients with other neurodegenerative disorders were included as controls. Brains were collected from 26 sCJD patients and 16 of them underwent OM collection. Brain and OM samples were subjected to PMCA using the brains of transgenic mice expressing human PrPC with methionine at codon 129 as reaction substrates. The amplified products were analyzed by Western blot after proteinase K digestion. Quantitative PMCA was performed to estimate PrPSc concentration in OM. PMCA enabled the detection of prions in OM samples with 79.3% sensitivity and 100% specificity. Except for a few cases, a predominant type 1 PrPSc was generated, regardless of the tissues analyzed. Notably, all amplified PrPSc were less resistant to PK compared to the original strain. In conclusion, although the optimized PMCA did not consent to recognize sCJD subtypes from the analysis of OM collected from living patients, it enabled us to estimate for the first time the amount of prions accumulating in this biological tissue. Further assay optimizations are needed to faithfully amplify peripheral prions whose recognition could lead to a better diagnosis and selection of patients for future clinical trials

    Functional network resilience to pathology in presymptomatic genetic frontotemporal dementia

    Get PDF
    © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)The presymptomatic phase of neurodegenerative diseases are characterized by structural brain changes without significant clinical features. We set out to investigate the contribution of functional network resilience to preserved cognition in presymptomatic genetic frontotemporal dementia. We studied 172 people from families carrying genetic abnormalities in C9orf72, MAPT, or PGRN. Networks were extracted from functional MRI data and assessed using graph theoretical analysis. We found that despite loss of both brain volume and functional connections, there is maintenance of an efficient topological organization of the brain's functional network in the years leading up to the estimated age of frontotemporal dementia symptom onset. After this point, functional network efficiency declines markedly. Reduction in connectedness was most marked in highly connected hub regions. Measures of topological efficiency of the brain's functional network and organization predicted cognitive dysfunction in domains related to symptomatic frontotemporal dementia and connectivity correlated with brain volume loss in frontotemporal dementia. We propose that maintaining the efficient organization of the brain's functional network supports cognitive health even as atrophy and connectivity decline presymptomatically.This work was funded by the UK Medical Research Council, the Italian Ministry of Health, and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant [grant number CoEN015]. JBR was supported by the Wellcome Trust [grant number 103838]. JBR, RB, TR, and SJ were supported by the NIHR Cambridge Biomedical Research Centre and Medical Research Council [grant number G1100464]. The Dementia Research Centre at UCL is supported by Alzheimer's Research UK, Brain Research Trust, and The Wolfson Foundation, NIHR Queen Square Dementia Biomedical Research Unit, NIHR UCL/H Biomedical Research Centre and Dementia Platforms UK. JDR is supported by an MRC Clinician Scientist Fellowship [grant number MR/M008525/1] and has received funding from the NIHR Rare Disease Translational Research Collaboration [grant number BRC149/NS/MH]. MM is supported by the Canadian Institutes of Health Research, Department of Medicine at Sunnybrook Health Sciences Centre and the University of Toronto, and the Sunnybrook Research Institute. RL is supported by Réseau de médecine génétique appliquée, Fonds de recherche du Québec—Santé [grant number FRQS]. FT is supported by the Italian Ministry of Health. DG is supported by the Fondazione Monzino and Italian Ministry of Health, Ricerca Corrente. SS is supported by Cassa di Risparmio di Firenze [grant number CRF 2013/0199] and the Ministry of Health [grant number RF-2010-2319722]. JvS is supported by The Netherlands Organisation for Health Research and Development Memorable grant [grant number 733050103] and Netherlands Alzheimer Foundation Memorable grant [grant number 733050103].info:eu-repo/semantics/publishedVersio

    Disease-related cortical thinning in presymptomatic granulin mutation carriers

    Get PDF
    © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.Mutations in the granulin gene (GRN) cause familial frontotemporal dementia. Understanding the structural brain changes in presymptomatic GRN carriers would enforce the use of neuroimaging biomarkers for early diagnosis and monitoring. We studied 100 presymptomatic GRN mutation carriers and 94 noncarriers from the Genetic Frontotemporal dementia initiative (GENFI), with MRI structural images. We analyzed 3T MRI structural images using the FreeSurfer pipeline to calculate the whole brain cortical thickness (CTh) for each subject. We also perform a vertex-wise general linear model to assess differences between groups in the relationship between CTh and diverse covariables as gender, age, the estimated years to onset and education. We also explored differences according to TMEM106B genotype, a possible disease modifier. Whole brain CTh did not differ between carriers and noncarriers. Both groups showed age-related cortical thinning. The group-by-age interaction analysis showed that this age-related cortical thinning was significantly greater in GRN carriers in the left superior frontal cortex. TMEM106B did not significantly influence the age-related cortical thinning. Our results validate and expand previous findings suggesting an increased CTh loss associated with age and estimated proximity to symptoms onset in GRN carriers, even before the disease onset.The authors thank all the volunteers for their participation in this study. SBE is a recipient of the Rio-Hortega post-residency grant from the Instituto de Salud Carlos III, Spain. This study was partially funded by Fundació Marató de TV3, Spain (grant no. 20143810 to RSV). The GENFI study has been supported by the Medical Research Council UK, the Italian Ministry of Health and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant, as well as other individual funding to investigators. KM has received funding from an Alzheimer’s Society PhD studentship. JDR acknowledges support from the National Institute for Health Research (NIHR) Queen Square Dementia Biomedical Research Unit and the University College London Hospitals Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre, the UK Dementia Research Institute, Alzheimer’s Research UK, the Brain Research Trust and the Wolfson Foundation. JCvS was supported by the Dioraphte Foundation grant 09-02-03-00, the Association for Frontotemporal Dementias Research Grant 2009, The Netherlands Organization for Scientific Research (NWO) grant HCMI 056-13-018, ZonMw Memorabel (Deltaplan Dementie, project number 733 051 042), Alzheimer Nederland and the Bluefield project. CG have received funding from JPND-Prefrontals VR Dnr 529-2014-7504, VR: 2015-02926, and 2018-02754, the Swedish FTD Initiative-Schörling Foundation, Alzheimer Foundation, Brain Foundation and Stockholm County Council ALF. DG has received support from the EU Joint Programme – Neurodegenerative Disease Research (JPND) and the Italian Ministry of Health (PreFrontALS) grant 733051042. JBR is funded by the Wellcome Trust (103838) and the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre. MM has received funding from a Canadian Institutes of Health Research operating grant and the Weston Brain Institute and Ontario Brain Institute. RV has received funding from the Mady Browaeys Fund for Research into Frontotemporal Dementia. EF has received funding from a CIHR grant #327387. JDR is an MRC Clinician Scientist (MR/M008525/1) and has received funding from the NIHR Rare Diseases Translational Research Collaboration (BRC149/NS/MH), the Bluefield Project and the Association for Frontotemporal Degeneration. MS was supported by a grant 779257 “Solve-RD” from the Horizon 2020 research and innovation programme.info:eu-repo/semantics/publishedVersio

    Brain functional network integrity sustains cognitive function despite atrophy in presymptomatic genetic frontotemporal dementia

    Get PDF
    © 2020 The Authors. Alzheimer's & Dementia published by Wiley Periodicals, Inc. on behalf of Alzheimer's Association. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.Introduction: The presymptomatic phase of neurodegenerative disease can last many years, with sustained cognitive function despite progressive atrophy. We investigate this phenomenon in familial frontotemporal dementia (FTD). Methods: We studied 121 presymptomatic FTD mutation carriers and 134 family members without mutations, using multivariate data-driven approach to link cognitive performance with both structural and functional magnetic resonance imaging. Atrophy and brain network connectivity were compared between groups, in relation to the time from expected symptom onset. Results: There were group differences in brain structure and function, in the absence of differences in cognitive performance. Specifically, we identified behaviorally relevant structural and functional network differences. Structure-function relationships were similar in both groups, but coupling between functional connectivity and cognition was stronger for carriers than for non-carriers, and increased with proximity to the expected onset of disease. Discussion: Our findings suggest that the maintenance of functional network connectivity enables carriers to maintain cognitive performance.K.A.T. is supported by the British Academy Postdoctoral Fellowship (PF160048) and the Guarantors of Brain (101149). J.B.R. is supported by the Wellcome Trust (103838), the Medical Research Council (SUAG/051 G101400), and the Cambridge NIHR Biomedical Research Centre. R. S.‐V. is supported by the Instituto de Salud Carlos III and the JPND network PreFrontAls (01ED1512/AC14/0013) and the Fundació Marató de TV3 (20143810). M.M and E.F are supported by the UK Medical Research Council, the Italian Ministry of Health, and the Canadian Institutes of Health Research as part of a Centres of Excellence in Neurodegeneration grant, and also a Canadian Institutes of Health Research operating grant (MOP 327387) and funding from the Weston Brain Institute. J.D.R., D.C., and K.M.M. are supported by the NIHR Queen Square Dementia Biomedical Research Unit, the NIHR UCL/H Biomedical Research Centre, and the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility. J.D.R. is supported by an MRC Clinician Scientist Fellowship (MR/M008525/1) and has received funding from the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH), the MRC UK GENFI grant (MR/ M023664/1), and The Bluefield Project. F.T. is supported by the Italian Ministry of Health (Grant NET‐2011‐02346784). L.C.J. and J.V.S. are supported by the Association for Frontotemporal Dementias Research Grant 2009, ZonMw Memorabel project number 733050103 and 733050813, and the Bluefield project. R.G. is supported by Italian Ministry of Health, Ricerca Corrente. J.L. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145; SyNergy ‐ ID 390857198). The Swedish contributors C.G., L.O., and C.A. were supported by grants from JPND Prefrontals Swedish Research Council (VR) 529‐2014‐7504, JPND GENFI‐PROX Swedish Research Council (VR) 2019‐02248, Swedish Research Council (VR) 2015‐ 02926, Swedish Research Council (VR) 2018‐02754, Swedish FTD Initiative‐Schorling Foundation, Swedish Brain Foundation, Swedish Alzheimer Foundation, Stockholm County Council ALF, Karolinska Institutet Doctoral Funding, and StratNeuro, Swedish Demensfonden, during the conduct of the study.info:eu-repo/semantics/publishedVersio

    Altered plasma protein profiles in genetic FTD – a GENFI study

    Get PDF
    © The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.Background: Plasma biomarkers reflecting the pathology of frontotemporal dementia would add significant value to clinical practice, to the design and implementation of treatment trials as well as our understanding of disease mechanisms. The aim of this study was to explore the levels of multiple plasma proteins in individuals from families with genetic frontotemporal dementia. Methods: Blood samples from 693 participants in the GENetic Frontotemporal Dementia Initiative study were analysed using a multiplexed antibody array targeting 158 proteins. Results: We found 13 elevated proteins in symptomatic mutation carriers, when comparing plasma levels from people diagnosed with genetic FTD to healthy non-mutation controls and 10 proteins that were elevated compared to presymptomatic mutation carriers. Conclusion: We identified plasma proteins with altered levels in symptomatic mutation carriers compared to non-carrier controls as well as to presymptomatic mutation carriers. Further investigations are needed to elucidate their potential as fluid biomarkers of the disease process.Open access funding provided by Karolinska Institute. C.G. received funding from EU Joint Programme—Neurodegenerative Disease Research -Prefrontals Vetenskapsrådet Dnr 529–2014-7504, Vetenskapsrådet 2015–02926, Vetenskapsrådet 2018–02754, the Swedish FTD Inititative-Schörling Foundation, Alzheimer Foundation, Brain Foundation, Dementia Foundation and Region Stockholm ALF-project. PN received funding from KTH Center for Applied Precision Medicine (KCAP) funded by the Erling-Persson Family Foundation, the Swedish FTD Inititative-Schörling Foundation and Åhlén foundation. D.G. received support from the EU Joint Programme—Neurodegenerative Disease Research and the Italian Ministry of Health (PreFrontALS) grant 733051042. E.F. has received funding from a Canadian Institute of Health Research grant #327387. F.M. received funding from the Tau Consortium and the Center for Networked Biomedical Research on Neurodegenerative Disease. J.B.R. has received funding from the Welcome Trust (103838) and is supported by the Cambridge University Centre for Frontotemporal Dementia, the Medical Research Council (SUAG/051 G101400) and the National Institute for Health Research Cambridge Biomedical Research Centre (BRC-1215–20014). J.C.V.S. was supported by the Dioraphte Foundation grant 09–02-03–00, Association for Frontotemporal Dementias Research Grant 2009, Netherlands Organization for Scientific Research grant HCMI 056–13-018, ZonMw Memorabel (Deltaplan Dementie, project number 733 051 042), Alzheimer Nederland and the Bluefield Project. J.D.R. is supported by the Bluefield Project and the National Institute for Health and Care Research University College London Hospitals Biomedical Research Centre, and has received funding from an MRC Clinician Scientist Fellowship (MR/M008525/1) and a Miriam Marks Brain Research UK Senior Fellowship. M.M. has received funding from a Canadian Institute of Health Research operating grant and the Weston Brain Institute and Ontario Brain Institute. M.O. has received funding from Germany’s Federal Ministry of Education and Research (BMBF). R.S-V. is supported by Alzheimer’s Research UK Clinical Research Training Fellowship (ARUK-CRF2017B-2) and has received funding from Fundació Marató de TV3, Spain (grant no. 20143810). R.V. has received funding from the Mady Browaeys Fund for Research into Frontotemporal Dementia. This work was also supported by the EU Joint Programme—Neurodegenerative Disease Research GENFI-PROX grant [2019–02248; to J.D.R., M.O., B.B., C.G., J.C.V.S. and M.S.info:eu-repo/semantics/publishedVersio

    The inner fluctuations of the brain in presymptomatic frontotemporal dementia: the chronnectome fingerprint

    Get PDF
    © 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Frontotemporal Dementia (FTD) is preceded by a long period of subtle brain changes, occurring in the absence of overt cognitive symptoms, that need to be still fully characterized. Dynamic network analysis based on resting-state magnetic resonance imaging (rs-fMRI) is a potentially powerful tool for the study of preclinical FTD. In the present study, we employed a "chronnectome" approach (recurring, time-varying patterns of connectivity) to evaluate measures of dynamic connectivity in 472 at-risk FTD subjects from the Genetic Frontotemporal dementia research Initiative (GENFI) cohort. We considered 249 subjects with FTD-related pathogenetic mutations and 223 mutation non-carriers (HC). Dynamic connectivity was evaluated using independent component analysis and sliding-time window correlation to rs-fMRI data, and meta-state measures of global brain flexibility were extracted. Results show that presymptomatic FTD exhibits diminished dynamic fluidity, visiting less meta-states, shifting less often across them, and travelling through a narrowed meta-state distance, as compared to HC. Dynamic connectivity changes characterize preclinical FTD, arguing for the desynchronization of the inner fluctuations of the brain. These changes antedate clinical symptoms, and might represent an early signature of FTD to be used as a biomarker in clinical trials.This work was supported in part by grants from the NIH (R01REB020407, P20GM103472), NSF grant 1539067 and the Well- come Trust grant (JBR 103838).info:eu-repo/semantics/publishedVersio
    corecore