517 research outputs found

    Recognition of the class Ib molecule Qa-1(b) by putative activating receptors CD94/NKG2C and CD94/NKG2E on mouse natural killer cells.

    Get PDF
    The heterodimeric CD94/NKG2A receptor, expressed by mouse natural killer (NK) cells, transduces inhibitory signals upon recognition of its ligand, Qa-1(b), a nonclassical major histocompatibility complex class Ib molecule. Here we clone and express two additional receptors, CD94/NKG2C and CD94/NKG2E, which we show also bind to Qa-1(b). Within their extracellular carbohydrate recognition domains, NKG2C and NKG2E share extensive homology with NKG2A (93-95% amino acid similarity); however, NKG2C/E receptors differ from NKG2A in their cytoplasmic domains (only 33% similarity) and contain features that suggest that CD94/NKG2C and CD94/NKG2E may be activating receptors. We employ a novel blocking anti-NKG2 monoclonal antibody to provide the first direct evidence that CD94/NKG2 molecules are the only Qa-1(b) receptors on NK cells. Molecular analysis reveals that NKG2C and NKG2E messages are extensively alternatively spliced and approximately 20-fold less abundant than NKG2A message in NK cells. The organization of the mouse Cd94/Nkg2 gene cluster, presented here, shows striking similarity with that of the human, arguing that the entire CD94/NKG2 receptor system is relatively primitive in origin. Analysis of synonymous substitution frequencies suggests that within a species, NKG2 genes may maintain similarities with each other by concerted evolution, possibly involving gene conversion-like events. These findings have implications for understanding NK cells and also raise new possibilities for the role of Qa-1 in immune responses

    Development and Function of CD94-Deficient Natural Killer Cells

    Get PDF
    The CD94 transmembrane-anchored glycoprotein forms disulfide-bonded heterodimers with the NKG2A subunit to form an inhibitory receptor or with the NKG2C or NKG2E subunits to assemble a receptor complex with activating DAP12 signaling proteins. CD94 receptors expressed on human and mouse NK cells and T cells have been proposed to be important in NK cell tolerance to self, play an important role in NK cell development, and contribute to NK cell-mediated immunity to certain infections including human cytomegalovirus. We generated a gene-targeted CD94-deficient mouse to understand the role of CD94 receptors in NK cell biology. CD94-deficient NK cells develop normally and efficiently kill NK cell-susceptible targets. Lack of these CD94 receptors does not alter control of mouse cytomegalovirus, lymphocytic choriomeningitis virus, vaccinia virus, or Listeria monocytogenes. Thus, the expression of CD94 and its associated NKG2A, NKG2C, and NKG2E subunits is dispensable for NK cell development, education, and many NK cell functions

    Immunology Taught by Bacteria

    Get PDF
    It has been proposed that the innate immune system might discriminate living and virulent pathogens from dead or harmless microbes, but the molecular mechanisms by which this discrimination could occur remain unclear. Although studies of model antigens and adjuvants have illuminated important principles underlying immune responses, the specific immune responses made to living, virulent pathogens can only be discovered by studies of the living, virulent pathogens themselves. Here, I review what one particular bacterium, Legionella pneumophila, has taught us about the innate immune response. Pathogens differ greatly in the mechanisms they use to invade, replicate within, and transmit among their hosts. However, a theme that emerges is that the pathogenic activities sensed by host cells are conserved among multiple pathogenic bacteria. Thus, immunology taught by L. pneumophila may lead to a more general understanding of the host response to infection

    Paired opposing leukocyte receptors recognizing rapidly evolving ligands are subject to homogenization of their ligand binding domains

    Get PDF
    Some leukocyte receptors come in groups of two or more where the partners share ligand(s) but transmit opposite signals. Some of the ligands, such as MHC class I, are fast evolving, raising the problem of how paired opposing receptors manage to change in step with respect to ligand binding properties and at the same time conserve opposite signaling functions. An example is the KLRC (NKG2) family, where opposing variants have been conserved in both rodents and primates. Phylogenetic analyses of the KLRC receptors within and between the two orders show that the opposing partners have been subject to post-speciation gene homogenization restricted mainly to the parts of the genes that encode the ligand binding domains. Concerted evolution similarly restricted is demonstrated also for the KLRI, KLRB (NKR-P1), KLRA (Ly49), and PIR receptor families. We propose the term merohomogenization for this phenomenon and discuss its significance for the evolution of immune receptors

    Loss of Niemann-Pick C1 or C2 Protein Results in Similar Biochemical Changes Suggesting That These Proteins Function in a Common Lysosomal Pathway

    Get PDF
    Niemann-Pick Type C (NPC) disease is a lysosomal storage disorder characterized by accumulation of unesterified cholesterol and other lipids in the endolysosomal system. NPC disease results from a defect in either of two distinct cholesterol-binding proteins: a transmembrane protein, NPC1, and a small soluble protein, NPC2. NPC1 and NPC2 are thought to function closely in the export of lysosomal cholesterol with both proteins binding cholesterol in vitro but they may have unrelated lysosomal roles. To investigate this possibility, we compared biochemical consequences of the loss of either protein. Analyses of lysosome-enriched subcellular fractions from brain and liver revealed similar decreases in buoyant densities of lysosomes from NPC1 or NPC2 deficient mice compared to controls. The subcellular distribution of both proteins was similar and paralleled a lysosomal marker. In liver, absence of either NPC1 or NPC2 resulted in similar alterations in the carbohydrate processing of the lysosomal protease, tripeptidyl peptidase I. These results highlight biochemical alterations in the lysosomal system of the NPC-mutant mice that appear secondary to lipid storage. In addition, the similarity in biochemical phenotypes resulting from either NPC1 or NPC2 deficiency supports models in which the function of these two proteins within lysosomes are linked closely

    Intestinal Inflammation Responds to Microbial Tissue Load Independent of Pathogen/Non-Pathogen Discrimination

    Get PDF
    The intestinal immune system mounts inflammatory responses to pathogens but tolerates harmless commensal microbiota. Various mechanisms for pathogen/non-pathogen discrimination have been proposed but their general relevance for inflammation control is unclear. Here, we compared intestinal responses to pathogenic Salmonella and non-pathogenic E. coli. Both microbes entered intestinal Peyer’s patches and, surprisingly, induced qualitatively and quantitatively similar initial inflammatory responses revealing a striking discrimination failure. Diverging inflammatory responses only occurred when Salmonella subsequently proliferated and induced escalating neutrophil infiltration, while harmless E. coli was rapidly cleared from the tissue and inflammation resolved. Transient intestinal inflammation induced by harmless E. coli tolerized against subsequent exposure thereby preventing chronic inflammation during repeated exposure. These data revealed a striking failure of the intestinal immune system to discriminate pathogens from harmless microbes based on distinct molecular signatures. Instead, appropriate intestinal responses to gut microbiota might be ensured by immediate inflammatory responses to any rise in microbial tissue loads, and desensitization after bacterial clearance

    The use of Bayesian latent class cluster models to classify patterns of cognitive performance in healthy ageing

    Get PDF
    The main focus of this study is to illustrate the applicability of latent class analysis in the assessment of cognitive performance profiles during ageing. Principal component analysis (PCA) was used to detect main cognitive dimensions (based on the neurocognitive test variables) and Bayesian latent class analysis (LCA) models (without constraints) were used to explore patterns of cognitive performance among community-dwelling older individuals. Gender, age and number of school years were explored as variables. Three cognitive dimensions were identified: general cognition (MMSE), memory (MEM) and executive (EXEC) function. Based on these, three latent classes of cognitive performance profiles (LC1 to LC3) were identified among the older adults. These classes corresponded to stronger to weaker performance patterns (LC1>LC2>LC3) across all dimensions; each latent class denoted the same hierarchy in the proportion of males, age and number of school years. Bayesian LCA provided a powerful tool to explore cognitive typologies among healthy cognitive agers.The study is integrated in the "Maintaining health in old age through homeostasis (SWITCHBOX)" collaborative project funded by the European Commission FP7 initiative (grant HEALTH-F2-2010-259772). NS and JAP are main team members of the European consortium SWITCHBOX (http://www.switchbox-online.eu/). NCS is supported by a SwitchBox post-doctoral fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Rapid Dopaminergic Modulation of the Fish Hypothalamic Transcriptome and Proteome

    Get PDF
    Background - Dopamine (DA) is a major neurotransmitter playing an important role in the regulation of vertebrate reproduction. We developed a novel method for the comparison of transcriptomic and proteomic data obtained from in vivo experiments designed to study the neuroendocrine actions of DA. // Methods and Findings - Female goldfish were injected (i.p.) with DA agonists (D1-specific; SKF 38393, or D2-specific; LY 171555) and sacrificed after 5 h. Serum LH levels were reduced by 57% and 75% by SKF 38393 and LY 171555, respectively, indicating that the treatments produced physiologically relevant responses in vivo. Bioinformatic strategies and a ray-finned fish database were established for microarray and iTRAQ proteomic analysis of the hypothalamus, revealing a total of 3088 mRNAs and 42 proteins as being differentially regulated by the treatments. Twenty one proteins and mRNAs corresponding to these proteins appeared on both lists. Many of the mRNAs and proteins affected by the treatments were grouped into the Gene Ontology categorizations of protein complex, signal transduction, response to stimulus, and regulation of cellular processes. There was a 57% and 14% directional agreement between the differentially-regulated mRNAs and proteins for SKF 38393 and LY 171555, respectively. // Conclusions - The results demonstrate the applicability of advanced high-throughput genomic and proteomic analyses in an amendable well-studied teleost model species whose genome has yet to be sequenced. We demonstrate that DA rapidly regulates multiple hypothalamic pathways and processes that are also known to be involved in pathologies of the central nervous system

    Multi-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species

    Get PDF
    The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this widespread and abundant North American lizard remain relatively unknown. In the present study, we use 10 novel nuclear DNA sequence loci (Nβ€Š=β€Š62 to 152) and one mitochondrial locus (Nβ€Š=β€Š226) to delimit green anole populations and infer their historical demography. We uncovered four evolutionarily distinct and geographically restricted lineages of green anoles using phylogenetics, Bayesian clustering, and genetic distance methods. Molecular dating indicates that these lineages last shared a common ancestor ∼2 million years ago. Summary statistics and analysis of the frequency distributions of DNA polymorphisms strongly suggest range-wide expansions in population size. Using Bayesian Skyline Plots, we inferred the timing of population size expansions, which differ across lineages, and found evidence for a relatively recent and rapid westward expansion of green anoles across the Gulf Coastal Plain during the mid-Pleistocene. One surprising result is that the distribution of genetic diversity is not consistent with a latitudinal shift caused by climatic oscillations as is observed for many co-distributed taxa. This suggests that the most recent Pleistocene glacial cycles had a limited impact on the geographic distribution of the green anole at the northern limits of its range
    • …
    corecore