2,526 research outputs found

    Making Sense of a New Transport System: An Ethnographic Study of the Cambridgeshire Guided Busway

    Get PDF
    An increase in public transport use has the potential to contribute to improving population health, and there is growing interest in innovative public transport systems. Yet how new public transport infrastructure is experienced and integrated (or not) into daily practice is little understood. We investigated how the Cambridgeshire Guided Busway, UK, was used and experienced in the weeks following its opening, using the method of participant observation (travelling on the busway and observing and talking to passengers) and drawing on Normalization Process Theory to interpret our data. Using excerpts of field notes to support our interpretations, we describe how the ease with which the new transport system could be integrated into existing daily routines was important in determining whether individuals would continue to use it. It emerged that there were two groups of passengers with different experiences and attitudes. Passengers who had previously travelled frequently on regular bus services did not perceive the new system to be an improvement; consequently, they were frustrated that it was differentiated from and not coherent with the regular system. In contrast, passengers who had previously travelled almost exclusively by car appraised the busway positively and perceived it to be a novel and superior form of travel. Our rich qualitative account highlights the varied and creative ways in which people learn to use new public transport and integrate it into their everyday lives. This has consequences for the introduction and promotion of future transport innovations. It is important to emphasise the novelty of new public transport, but also the ways in which its use can become ordinary and routine. Addressing these issues could help to promote uptake of other public transport interventions, which may contribute to increasing physical activity and improving population health. © 2013 Jones et al

    The thick disk rotation-metallicity correlation as a fossil of an "inverse chemical gradient" in the early Galaxy

    Full text link
    The thick disk rotation--metallicity correlation, \partial V_\phi/\partial[Fe/H] =40\div 50 km s^{-1}dex^{-1} represents an important signature of the formation processes of the galactic disk. We use nondissipative numerical simulations to follow the evolution of a Milky Way (MW)-like disk to verify if secular dynamical processes can account for this correlation in the old thick disk stellar population. We followed the evolution of an ancient disk population represented by 10 million particles whose chemical abundances were assigned by assuming a cosmologically plausible radial metallicity gradient with lower metallicity in the inner regions, as expected for the 10-Gyr-old MW. Essentially, inner disk stars move towards the outer regions and populate layers located at higher |z|. A rotation--metallicity correlation appears, which well resembles the behaviour observed in our Galaxy at a galactocentric distance between 8 kpc and 10 kpc. In particular,we measure a correlation of \partial V_\phi/\partial[Fe/H]\simeq 60 km s^{-1}dex^{-1} for particles at 1.5 kpc < |z| < 2.0 kpc that persists up to 6 Gyr. Our pure N-body models can account for the V_\phi vs. [Fe/H] correlation observed in the thick disk of our Galaxy, suggesting that processes internal to the disk such as heating and radial migration play a role in the formation of this old stellar component. In this scenario, the positive rotation-metallicity correlation of the old thick disk population would represent the relic signature of an ancient "inverse" chemical (radial) gradient in the inner Galaxy, which resulted from accretion of primordial gas.Comment: Accepted for publication on Astronomy and Astrophysic

    Suggested Improvements for the Allergenicity Assessment of Genetically Modified Plants Used in Foods

    Get PDF
    Genetically modified (GM) plants are increasingly used for food production and industrial applications. As the global population has surpassed 7 billion and per capita consumption rises, food production is challenged by loss of arable land, changing weather patterns, and evolving plant pests and disease. Previous gains in quantity and quality relied on natural or artificial breeding, random mutagenesis, increased pesticide and fertilizer use, and improved farming techniques, all without a formal safety evaluation. However, the direct introduction of novel genes raised questions regarding safety that are being addressed by an evaluation process that considers potential increases in the allergenicity, toxicity, and nutrient availability of foods derived from the GM plants. Opinions vary regarding the adequacy of the assessment, but there is no documented proof of an adverse effect resulting from foods produced from GM plants. This review and opinion discusses current practices and new regulatory demands related to food safety

    Phosphoenolpyruvate carboxylase dentified as a key enzyme in erythrocytic Plasmodium falciparum carbon metabolism

    Get PDF
    Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in thePlasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery

    Effect of maternal Schistosoma mansoni infection and praziquantel treatment during pregnancy on Schistosoma mansoni infection and immune responsiveness among offspring at age five years.

    Get PDF
    INTRODUCTION: Offspring of Schistosoma mansoni-infected women in schistosomiasis-endemic areas may be sensitised in-utero. This may influence their immune responsiveness to schistosome infection and schistosomiasis-associated morbidity. Effects of praziquantel treatment of S. mansoni during pregnancy on risk of S. mansoni infection among offspring, and on their immune responsiveness when they become exposed to S. mansoni, are unknown. Here we examined effects of praziquantel treatment of S. mansoni during pregnancy on prevalence of S. mansoni and immune responsiveness among offspring at age five years. METHODS: In a trial in Uganda (ISRCTN32849447, http://www.controlled-trials.com/ISRCTN32849447/elliott), offspring of women treated with praziquantel or placebo during pregnancy were examined for S. mansoni infection and for cytokine and antibody responses to SWA and SEA, as well as for T cell expression of FoxP3, at age five years. RESULTS: Of the 1343 children examined, 32 (2.4%) had S. mansoni infection at age five years based on a single stool sample. Infection prevalence did not differ between children of treated or untreated mothers. Cytokine (IFNγ, IL-5, IL-10 and IL-13) and antibody (IgG1, Ig4 and IgE) responses to SWA and SEA, and FoxP3 expression, were higher among infected than uninfected children. Praziquantel treatment of S. mansoni during pregnancy had no effect on immune responses, with the exception of IL-10 responses to SWA, which was higher in offspring of women that received praziquantel during pregnancy than those who did not. CONCLUSION: We found no evidence that maternal S. mansoni infection and its treatment during pregnancy influence prevalence and intensity of S. mansoni infection or effector immune response to S. mansoni infection among offspring at age five years, but the observed effects on IL-10 responses to SWA suggest that maternal S. mansoni and its treatment during pregnancy may affect immunoregulatory responsiveness in childhood schistosomiasis. This might have implications for pathogenesis of the disease

    Is there a clinically significant seasonal component to hospital admissions for atrial fibrillation?

    Get PDF
    BACKGROUND: Atrial fibrillation is a common cardiac dysrhythmia, particularly in the elderly. Recent studies have indicated a statistically significant seasonal component to atrial fibrillation hospitalizations. METHODS: We conducted a retrospective population cohort study using time series analysis to evaluate seasonal patterns of atrial fibrillation hospitalizations for the province of Ontario for the years 1988 to 2001. Five different series methods were used to analyze the data, including spectral analysis, X11, R-Squared, autocorrelation function and monthly aggregation. RESULTS: This study found evidence of weak seasonality, most apparent at aggregate levels including both ages and sexes. There was dramatic increase in hospitalizations for atrial fibrillation over the years studied and an age dependent increase in rates per 100,000. Overall, the magnitude of seasonal difference between peak and trough months is in the order of 1.4 admissions per 100,000 population. The peaks for hospitalizations were predominantly in April, and the troughs in August. CONCLUSIONS: Our study confirms statistical evidence of seasonality for atrial fibrillation hospitalizations. This effect is small in absolute terms and likely not significant for policy or etiological research purposes

    Elastic Properties of 4–6 nm-thick Glassy Carbon Thin Films

    Get PDF
    Glassy carbon is a disordered, nanoporous form of carbon with superior thermal and chemical stability in extreme environments. Freestanding glassy carbon specimens with 4–6 nm thickness and 0.5 nm average pore size were synthesized and fabricated from polyfurfuryl alcohol precursors. Elastic properties of the specimens were measured in situ inside a scanning electron microscope using a custom-built micro-electro-mechanical system. The Young’s modulus, fracture stress and strain values were measured to be about 62 GPa, 870 MPa and 1.3%, respectively; showing strong size effects compared to a modulus value of 30 GPa at the bulk scale. This size effect is explained on the basis of the increased significance of surface elastic properties at the nanometer length-scale

    Tracheal Replacement Therapy with a Stem Cell-Seeded Graft: Lessons from Compassionate Use Application of a GMP-Compliant Tissue-Engineered Medicine

    Get PDF
    Tracheal replacement for the treatment of end-stage airway disease remains an elusive goal. The use of tissue-engineered tracheae in compassionate use cases suggests that such an approach is a viable option. Here, a stem cell-seeded, decellularized tissue-engineered tracheal graft was used on a compassionate basis for a girl with critical tracheal stenosis after conventional reconstructive techniques failed. The graft represents the first cell-seeded tracheal graft manufactured to full good manufacturing practice (GMP) standards. We report important preclinical and clinical data from the case, which ended in the death of the recipient. Early results were encouraging, but an acute event, hypothesized to be an intrathoracic bleed, caused sudden airway obstruction 3 weeks post-transplantation, resulting in her death. We detail the clinical events and identify areas of priority to improve future grafts. In particular, we advocate the use of stents during the first few months post-implantation. The negative outcome of this case highlights the inherent difficulties in clinical translation where preclinical in vivo models cannot replicate complex clinical scenarios that are encountered. The practical difficulties in delivering GMP grafts underscore the need to refine protocols for phase I clinical trials

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures
    corecore