153 research outputs found

    Toll-like receptor signaling adapter proteins govern spread of neuropathic pain and recovery following nerve injury in male mice.

    Get PDF
    BackgroundSpinal Toll-like receptors (TLRs) and signaling intermediaries have been implicated in persistent pain states. We examined the roles of two major TLR signaling pathways and selected TLRs in a mononeuropathic allodynia.MethodsL5 spinal nerve ligation (SNL) was performed in wild type (WT, C57BL/6) male and female mice and in male Tlr2-/-Tlr3-/-, Tlr4-/-, Tlr5-/-, Myd88-/-, Triflps2, Myd88/Triflps2, Tnf-/-, and Ifnar1-/- mice. We also examined L5 ligation in Tlr4-/- female mice. We examined tactile allodynia using von Frey hairs. Iba-1 (microglia) and GFAP (astrocytes) were assessed in spinal cords by immunostaining. Tactile thresholds were analyzed by 1- and 2-way ANOVA and the Bonferroni post hoc test was used.ResultsIn WT male and female mice, SNL lesions resulted in a persistent and robust ipsilateral, tactile allodynia. In males with TLR2, 3, 4, or 5 deficiencies, tactile allodynia was significantly, but incompletely, reversed (approximately 50%) as compared to WT. This effect was not seen in female Tlr4-/- mice. Increases in ipsilateral lumbar Iba-1 and GFAP were seen in mutant and WT mice. Mice deficient in MyD88, or MyD88 and TRIF, showed an approximately 50% reduction in withdrawal thresholds and reduced ipsilateral Iba-1. In contrast, TRIF and interferon receptor null mice developed a profound ipsilateral and contralateral tactile allodynia. In lumbar sections of the spinal cords, we observed a greater increase in Iba-1 immunoreactivity in the TRIF-signaling deficient mice as compared to WT, but no significant increase in GFAP. Removing MyD88 abrogated the contralateral allodynia in the TRIF signaling-deficient mice. Conversely, IFNÎČ, released downstream to TRIF signaling, administered intrathecally, temporarily reversed the tactile allodynia.ConclusionsThese observations suggest a critical role for the MyD88 pathway in initiating neuropathic pain, but a distinct role for the TRIF pathway and interferon in regulating neuropathic pain phenotypes in male mice

    Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (<it>MeCP2</it>), modify histones (<it>RSK2 </it>and <it>JARID1C</it>), and remodel nucleosomes through ATP hydrolysis (<it>ATRX</it>). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the <it>SNF2L </it>gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.</p> <p>Methods</p> <p>We used an <it>in silico </it>and RT-PCR approach to fully characterize specific SNF2L isoforms. Mutation screening was performed in 12 patients from individual families with syndromic or non-syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region, complete 5' and 3' untranslated regions, and consensus splice-sites.</p> <p>Results</p> <p>The <it>SNF2L </it>gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing to generate several distinct transcripts. Specific isoforms are generated through the alternate use of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.</p> <p>Conclusion</p> <p>Our results demonstrate that there are numerous splice variants of SNF2L that are expressed in multiple cell types and which alter subcellular localization and function. <it>SNF2L </it>mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the possibility that regulatory mutations might exist. Nonetheless, <it>SNF2L </it>remains a candidate for XLMR localized to Xq25-26, including the Shashi XLMR syndrome.</p

    Characterization of novel isoforms and evaluation of SNF2L/SMARCA1 as a candidate gene for X-linked mental retardation in 12 families linked to Xq25-26

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes whose products modify chromatin structure have been recognized as a cause of X-linked mental retardation (XLMR). These genes encode proteins that regulate DNA methylation (<it>MeCP2</it>), modify histones (<it>RSK2 </it>and <it>JARID1C</it>), and remodel nucleosomes through ATP hydrolysis (<it>ATRX</it>). Thus, genes encoding other chromatin modifying proteins should also be considered as disease candidate genes. In this work, we have characterized the <it>SNF2L </it>gene, encoding an ATP-dependent chromatin remodeling protein of the ISWI family, and sequenced the gene in patients from 12 XLMR families linked to Xq25-26.</p> <p>Methods</p> <p>We used an <it>in silico </it>and RT-PCR approach to fully characterize specific SNF2L isoforms. Mutation screening was performed in 12 patients from individual families with syndromic or non-syndromic XLMR. We sequenced each of the 25 exons encompassing the entire coding region, complete 5' and 3' untranslated regions, and consensus splice-sites.</p> <p>Results</p> <p>The <it>SNF2L </it>gene spans 77 kb and is encoded by 25 exons that undergo alternate splicing to generate several distinct transcripts. Specific isoforms are generated through the alternate use of exons 1 and 13, and by the use of alternate donor splice sites within exon 24. Alternate splicing within exon 24 removes a NLS sequence and alters the subcellular distribution of the SNF2L protein. We identified 3 single nucleotide polymorphisms but no mutations in our 12 patients.</p> <p>Conclusion</p> <p>Our results demonstrate that there are numerous splice variants of SNF2L that are expressed in multiple cell types and which alter subcellular localization and function. <it>SNF2L </it>mutations are not a cause of XLMR in our cohort of patients, although we cannot exclude the possibility that regulatory mutations might exist. Nonetheless, <it>SNF2L </it>remains a candidate for XLMR localized to Xq25-26, including the Shashi XLMR syndrome.</p

    Time and Encoding Effects in the Concealed Knowledge Test

    Get PDF
    Although the traditional “lie detector” test is used frequently in forensic contexts, it has (like most test of deception) some limitations. The concealed knowledge test (CKT) focuses on participants’ recognition of privileged knowledge rather than lying per-se and has been studied extensively using a variety of measures. A “guilty” suspect’s interaction with and memory of crimescene items may vary. Furthermore, memory for crimescene items may diminish over time. The interaction of encoding quality and test delay on CKT efficiency has been previously implied, but not yet demonstrated. We used a response-time based CKT to detect concealed knowledge from shallow and deep study procedures after 10-min, 24-h, and 1-week delays. Results show that more elaborately encoded information afforded higher detection accuracy than poorly encoded items. Although classification accuracy following deep study was unaffected by delay, detection of poorly elaborated information was initially high, but compromised after 1 week. Thus, choosing optimal test items requires considering both test delay and initial encoding level

    How Much, How Fast?: A Review and Science Plan for Research on the Instability of Antarctica’s Thwaites Glacier in the 21st century

    Get PDF
    Constraining how much and how fast the West Antarctic Ice Sheet (WAIS) will change in the coming decades has recently been identified as the highest priority in Antarctic research (National Academies, 2015). Here we review recent research on WAIS and outline further scientific objectives for the area now identified as the most likely to undergo near-term significant change: Thwaites Glacier and the adjacent Amundsen Sea. Multiple lines of evidence point to an ongoing rapid loss of ice in this region in response to changing atmospheric and oceanic conditions. Models of the ice sheet's dynamic behavior indicate a potential for greatly accelerated ice loss as ocean-driven melting at the Thwaites Glacier grounding zone and nearby areas leads to thinning, faster flow, and retreat. A complete retreat of the Thwaites Glacier basin would raise global sea level by more than three meters by entraining ice from adjacent catchments. This scenario could occur over the next few centuries, and faster ice loss could occur through processes omitted from most ice flow models such as hydrofracture and ice cliff failure, which have been observed in recent rapid ice retreats elsewhere. Increased basal melt at the grounding zone and increased potential for hydrofracture due to enhanced surface melt could initiate a more rapid collapse of Thwaites Glacier within the next few decades

    Identification of glucose transporters in Aspergillus nidulans

    Get PDF
    o characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose.The authors would like to thank the Fundacao de Amparo a Pesquisa do Estado de Sao Paulo and Conselho Nacional de Desenvolvimento Cientifico e Tecnologico, Brazil for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Obesity Takes Its Toll on Visceral Pain: High-Fat Diet Induces Toll-Like Receptor 4- Dependent Visceral Hypersensitivity

    Get PDF
    Exposure to high-fat diet induces both, peripheral and central alterations in TLR4 expression. Moreover, functional TLR4 is required for the development of high-fat diet-induced obesity. Recently, central alterations in TLR4 expression have been associated with the modulation of visceral pain. However, it remains unknown whether there is a functional interaction between the role of TLR4 in diet-induced obesity and in visceral pain. In the present study we investigated the impact of long-term exposure to high-fat diet on visceral pain perception and on the levels of TLR4 and Cd11b (a microglial cell marker) protein expression in the prefrontal cortex (PFC) and hippocampus. Peripheral alterations in TLR4 were assessed following the stimulation of spleenocytes with the TLR4-agonist LPS. Finally, we evaluated the effect of blocking TLR4 on visceral nociception, by administering TAK-242, a selective TLR4-antagonist. Our results demonstrated that exposure to high-fat diet induced visceral hypersensitivity. In parallel, enhanced TLR4 expression and microglia activation were found in brain areas related to visceral pain, the PFC and the hippocampus. Likewise, peripheral TLR4 activity was increased following long-term exposure to high-fat diet, resulting in an increased level of pro-inflammatory cytokines. Finally, TLR4 blockage counteracted the hyperalgesic phenotype present in mice fed on high-fat diet. Our data reveal a role for TLR4 in visceral pain modulation in a model of diet-induced obesity, and point to TLR4 as a potential therapeutic target for the development of drugs to treat visceral hypersensitivity present in pathologies associated to fat diet consumption
    • 

    corecore