1,168 research outputs found

    Monoclonal antibodies against chicken type V collagen: production, specificity, and use for immunocytochemical localization in embryonic cornea and other organs

    Get PDF
    Two monoclonal antibodies have been produced against chick type V collagen and shown to be highly specific for separate, conformational dependent determinants within this molecule. When used for immunocytochemical tissue localization, these antibodies show that a major site for the in situ deposition of type V is within the extracellular matrices of many dense connective tissues. In these, however, it is largely in a form unavailable to the antibodies, thus requiring a specific “unmasking” treatment to obtain successful immunocytochemical staining. The specificity of these two IgG antibodies was determined by inhibition ELISA, in which only type V and no other known collagen shows inhibition. In ELISA, mixtures of the two antibodies give an additive binding reaction to the collagen, suggesting that each is against a different antigenic determinant. That both antigenic determinants are conformational dependent, being either in, or closely associated with, the collagen helix is demonstrated by the loss of antibody binding to molecules that have been thermally denatured. The temperature at which this occurs, as assayed by inhibition ELISA, is very similar to that at which the collagen helix melts, as determined by optical rotation. This gives strong additional evidence that the antibodies are directed against the collagen. The antibodies were used for indirect immunofluorescence analyses of cryostat sections of corneas and other organs from 17 to 18-day-old chick embryos. Of all tissues examined only Bowman’s membrane gave a strong staining reaction with cryostat sections of unfixed material. Staining in other areas of the cornea and in other tissues was very light or nonexistent. When, however, sections were pretreated with pepsin dissolved in dilute HAc or, surprisingly, with the dilute HAc itself dramatic new staining by the antibodies was observed in most tissues examined. The staining, which was specific for the anti-type V collagen antibodies, was largely confined to extracellular matrices of dense connective tissues. Experiments using protease inhibitors suggested that the “unmasking” did not involve proteolysis. We do not yet know the mechanism of this unmasking; however, one possibility is that the dilute acid causes swelling or conformational changes in a type-V collagen-containing supramolecular structure. Further studies should allow us to determine whether this is the case

    Line-Focus Acoustic Mcroscopy Measurements of Thin-Film Elastic Constants

    Get PDF
    Thin film materials are widely used as hard, protective coatings for softer surfaces. It is known that fracture strength and hardness are related to the elastic and plastic properties [1]. The elastic constants of the film deposited on a substrate are, however, difficult to measure. By a technique which was recently discussed [2] the elastic constants of amorphous (isotropic) films and single-crystal (anisotropic) films can be obtained by measuring the velocities of surface acoustic waves (SAWs) propagating over a thin-film/ substrate specimen by the use of a line-focus acoustic microscope

    Theory of the Eigler-swith

    Full text link
    We suggest a simple model to describe the reversible field-induced transfer of a single Xe-atom in a scanning tunneling microscope, --- the Eigler-switch. The inelasticly tunneling electrons give rise to fluctuating forces on and damping of the Xe-atom resulting in an effective current dependent temperature. The rate of transfer is controlled by the well-known Arrhenius law with this effective temperature. The directionality of atom transfer is discussed, and the importance of use of non-equlibrium-formalism for the electronic environment is emphasized. The theory constitutes a formal derivation and generalization of the so-called Desorption Induced by Multiple Electron Transitions (DIMET) point of view.Comment: 13 pages (including 2 figures in separate LaTeX-files with ps-\specials), REVTEX 3.

    Spatial Regulation of Membrane Fusion Controlled by Modification of Phosphoinositides

    Get PDF
    Membrane fusion plays a central role in many cell processes from vesicular transport to nuclear envelope reconstitution at mitosis but the mechanisms that underlie fusion of natural membranes are not well understood. Studies with synthetic membranes and theoretical considerations indicate that accumulation of lipids characterised by negative curvature such as diacylglycerol (DAG) facilitate fusion. However, the specific role of lipids in membrane fusion of natural membranes is not well established. Nuclear envelope (NE) assembly was used as a model for membrane fusion. A natural membrane population highly enriched in the enzyme and substrate needed to produce DAG has been isolated and is required for fusions leading to nuclear envelope formation, although it contributes only a small amount of the membrane eventually incorporated into the NE. It was postulated to initiate and regulate membrane fusion. Here we use a multidisciplinary approach including subcellular membrane purification, fluorescence spectroscopy and Förster resonance energy transfer (FRET)/two-photon fluorescence lifetime imaging microscopy (FLIM) to demonstrate that initiation of vesicle fusion arises from two unique sites where these vesicles bind to chromatin. Fusion is subsequently propagated to the endoplasmic reticulum-derived membranes that make up the bulk of the NE to ultimately enclose the chromatin. We show how initiation of multiple vesicle fusions can be controlled by localised production of DAG and propagated bidirectionally. Phospholipase C (PLCγ), GTP hydrolysis and (phosphatidylinsositol-(4,5)-bisphosphate (PtdIns(4,5)P2) are required for the latter process. We discuss the general implications of membrane fusion regulation and spatial control utilising such a mechanism

    Blockade of insulin-like growth factors increases efficacy of paclitaxel in metastatic breast cancer.

    Get PDF
    Breast cancer remains the leading cause of cancer death in women owing to metastasis and the development of resistance to established therapies. Macrophages are the most abundant immune cells in the breast tumor microenvironment and can both inhibit and support cancer progression. Thus, gaining a better understanding of how macrophages support cancer could lead to the development of more effective therapies. In this study, we find that breast cancer-associated macrophages express high levels of insulin-like growth factors 1 and 2 (IGFs) and are the main source of IGFs within both primary and metastatic tumors. In total, 75% of breast cancer patients show activation of insulin/IGF-1 receptor signaling and this correlates with increased macrophage infiltration and advanced tumor stage. In patients with invasive breast cancer, activation of Insulin/IGF-1 receptors increased to 87%. Blocking IGF in combination with paclitaxel, a chemotherapeutic agent commonly used to treat breast cancer, showed a significant reduction in tumor cell proliferation and lung metastasis in pre-clinical breast cancer models compared to paclitaxel monotherapy. Our findings provide the rationale for further developing the combination of paclitaxel with IGF blockers for the treatment of invasive breast cancer, and Insulin/IGF1R activation and IGF+ stroma cells as potential biomarker candidates for further evaluation

    Novel application of low pH-dependent fluorescent dyes to examine colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endoscopy capable of fluorescence observation provides histological information on gastrointestinal lesions. We explored the novel application of low pH-dependent fluorescent dyes for fluorescence observation of crypt structure and inflammatory cell infiltration in the colon.</p> <p>Methods</p> <p>Low pH-dependent fluorescent dyes were applied to the colonic mucosa of normal mice for observation under fluorescence stereomicroscopy system. We also examined mouse models of colitis, which were induced by trinitrobenzenesulfonic acid, dextran sulfate sodium or interleukin-10 deficiency.</p> <p>Results</p> <p>Topical application of low pH-dependent fluorescent dyes revealed crypts as ring-shaped fluorescent stains by visualizing the mucin granules of goblet cells. Because of the minimal fluorescence intensity of the low pH-dependent fluorescent dyes in phosphate-buffered saline, it was not necessary to wash the mucosa before the fluorescence observation. 4-Nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ) was quicker to achieve complete staining (three minutes) than LysoSensor Green DND-153 and DND-189 (20 minutes). In each type of colitis, NBD-PZ revealed the destruction of the crypts as the disappearance of the ring-shaped fluorescent stains and the infiltration of inflammatory cells as the aggregation of punctate fluorescent stains through visualization of lysosomes.</p> <p>Conclusions</p> <p>Low pH-dependent fluorescent dyes, especially NBD-PZ, are suitable for topical application to the colonic mucosa and have characteristics that allow for the histological examination of colitis.</p

    Exercise therapy for chronic low back pain:protocol for an individual participant data meta-analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low back pain (LBP) is one of the leading causes of disability and has a major socioeconomic impact. Despite a large amount of research in the field, there remains uncertainty about the best treatment approach for chronic LBP, and identification of relevant patient subgroups is an important goal. Exercise therapy is a commonly used strategy to treat chronic low back pain and is one of several interventions that evidence suggests is moderately effective.</p> <p>In parallel with an update of the 2005 Cochrane review, we will undertake an individual participant data (IPD) meta-analysis, which will allow us to standardize analyses across studies and directly derive results, and to examine differential treatment effects across individuals to estimate how patients’ characteristics modify treatment benefit.</p> <p>Methods/design</p> <p>We will use standard systematic review methods advocated by the Cochrane Collaboration to identify relevant trials. We will include trials evaluating exercise therapy compared to any or no other interventions in adult non-specific chronic LBP. Our primary outcomes of interest include pain, functional status, and return-to-work/absenteeism. We will assess potential risk of bias for each study meeting selection criteria, using criteria and methods recommended by the Cochrane BRG.</p> <p>The original individual participant data will be requested from the authors of selected trials having moderate to low risk of bias. We will test original data and compile a master dataset with information about each trial mapped on a pre-specified framework, including reported characteristics of the study sample, exercise therapy characteristics, individual patient characteristics at baseline and all follow-up periods, subgroup and treatment effect modifiers investigated. Our analyses will include descriptive, study-level meta-analysis and meta-regression analyses of the overall treatment effect, and individual-level IPD meta-analyses of treatment effect modification. IPD meta-analyses will be conducted using a one-step approach where the IPD from all studies are modeled simultaneously while accounting for the clustering of participants with studies.</p> <p>Discussion</p> <p>We will analyze IPD across a large number of LBP trials. The resulting larger sample size and consistent presentation of data will allow additional analyses to explore patient-level heterogeneity in treatment outcomes and prognosis of chronic LBP.</p

    Accelerated Hydrolysis of Aspirin Using Alternating Magnetic Fields

    Get PDF
    The major problem of current drug-based therapy is selectivity. As in other areas of science, a combined approach might improve the situation decisively. The idea is to use the pro-drug principle together with an alternating magnetic field as physical stimulus, which can be applied in a spatially and temporarily controlled manner. As a proof of principle, the neutral hydrolysis of aspirin in physiological phosphate buffer of pH 7.5 at 40 °C was chosen. The sensor and actuator system is a commercially available gold nanoparticle (NP) suspension which is approved for animal usage, stable in high concentrations and reproducibly available. Applying the alternating magnetic field of a conventional NMR magnet system accelerated the hydrolysis of aspirin in solution

    DNA Dynamics Is Likely to Be a Factor in the Genomic Nucleotide Repeats Expansions Related to Diseases

    Get PDF
    Trinucleotide repeats sequences (TRS) represent a common type of genomic DNA motif whose expansion is associated with a large number of human diseases. The driving molecular mechanisms of the TRS ongoing dynamic expansion across generations and within tissues and its influence on genomic DNA functions are not well understood. Here we report results for a novel and notable collective breathing behavior of genomic DNA of tandem TRS, leading to propensity for large local DNA transient openings at physiological temperature. Our Langevin molecular dynamics (LMD) and Markov Chain Monte Carlo (MCMC) simulations demonstrate that the patterns of openings of various TRSs depend specifically on their length. The collective propensity for DNA strand separation of repeated sequences serves as a precursor for outsized intermediate bubble states independently of the G/C-content. We report that repeats have the potential to interfere with the binding of transcription factors to their consensus sequence by altered DNA breathing dynamics in proximity of the binding sites. These observations might influence ongoing attempts to use LMD and MCMC simulations for TRS–related modeling of genomic DNA functionality in elucidating the common denominators of the dynamic TRS expansion mutation with potential therapeutic applications

    Genotoxicity assessment of a pharmaceutical effluent using four bioassays

    Get PDF
    Pharmaceutical industries are among the major contributors to industrial waste. Their effluents when wrongly handled and disposed of endanger both human and environmental health. In this study, we investigated the potential genotoxicity of a pharmaceutical effluent, by using the Allium cepa, mouse- sperm morphology, bone marrow chromosome aberration (CA) and micronucleus (MN) assays. Some of the physico-chemical properties of the effluent were also determined. The A. cepa and the animal assays were respectively carried out at concentrations of 0.5, 1, 2.5, 5 and 10%; and 1, 5, 10, 25 and 50% of the effluent. There was a statistically different (p < 0.05), concentration-dependent inhibition of onion root growth and mitotic index, and induction of chromosomal aberrations in the onion and mouse CA test. Assessment of sperm shape showed that the fraction of the sperm that was abnormal in shape was significantly (p < 0.05) greater than the negative control value. MN analysis showed a dose-dependent induction of micronucleated polychromatic erythrocytes across the treatment groups. These observations were provoked by the toxic and genotoxic constituents present in test samples. The tested pharmaceutical effluent is a potentially genotoxic agent and germ cell mutagen, and may induce adverse health effects in exposed individuals
    corecore