101 research outputs found

    Studies on the virome of the entomopathogenic fungus Beauveria bassiana reveal novel dsRNA elements and mild hypervirulence.

    Get PDF
    © 2017 Kotta-Loizou, Coutts. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Kotta-Loizou I, Coutts RHA (2017) 'Studies on the Virome of the Entomopathogenic Fungus Beauveria bassiana Reveal Novel dsRNA Elements and Mild Hypervirulence', PLoS Pathogens, 13(1): e1006183. doi:10.1371/journal.ppat.1006183The entomopathogenic fungus Beauveria bassiana has a wide host range and is used as a biocontrol agent against arthropod pests. Mycoviruses have been described in phytopathogenic fungi while in entomopathogenic fungi their presence has been reported only rarely. Here we show that 21.3% of a collection of B. bassiana isolates sourced from worldwide locations, harbor dsRNA elements. Molecular characterization of these elements revealed the prevalence of mycoviruses belonging to the Partitiviridae and Totiviridae families, the smallest reported virus to date, belonging to the family Narnaviridae, and viruses unassigned to a family or genus. Of particular importance is the discovery of members of a newly proposed family Polymycoviridae in B. bassiana. Polymycoviruses, previously designated as tetramycoviruses, consist of four non-conventionally encapsidated capped dsRNAs. The presence of additional non-homologous genomic segments in B. bassiana polymycoviruses and other fungi illustrates the unprecedented dynamic nature of the viral genome. Finally, a comparison of virus-free and virus-infected isogenic lines derived from an exemplar B. bassiana isolate revealed a mild hypervirulent effect of mycoviruses on the growth of their host isolate and on its pathogenicity against the greater wax moth Galleria mellonella, highlighting for the first time the potential of mycoviruses as enhancers of biocontrol agents.Peer reviewedFinal Published versio

    Use of Motor Abundance in Young and Older Adults during Dual-Task Treadmill Walking

    Get PDF
    Contains fulltext : 110120.pdf (publisher's version ) (Open Access)Motor abundance allows individuals to perform any task reliably while being variable in movement's particulars. The study investigated age-related differences in this feature when young adults (YA) and older adults (OA) performed challenging tasks, namely treadmill walking alone and while performing a cognitive task. A goal function for treadmill walking was first defined, i.e., maintain constant speed at each step, which led to a goal equivalent manifold (GEM) containing all combinations of step time and step length that equally satisfied the function. Given the GEM, amounts of goal-equivalent and non-goal-equivalent variability were afterwards determined and used to define an index providing information about the set of effective motor solutions relative to the GEM. The set was limited in OA compared to YA in treadmill walking alone, indicating that OA made less flexible use of motor abundance than YA. However, this differentiation between YA and OA disappeared when concurrently performing the cognitive task. It is proposed that OA might have benefited from cognitive compensation

    Essential Domains of Anaplasma phagocytophilum Invasins Utilized to Infect Mammalian Host Cells

    Get PDF
    Anaplasma phagocytophilum causes granulocytic anaplasmosis, an emerging disease of humans and domestic animals. The obligate intracellular bacterium uses its invasins OmpA, Asp14, and AipA to infect myeloid and non-phagocytic cells. Identifying the domains of these proteins that mediate binding and entry, and determining the molecular basis of their interactions with host cell receptors would significantly advance understanding of A. phagocytophilum infection. Here, we identified the OmpA binding domain as residues 59 to 74. Polyclonal antibody generated against a peptide spanning OmpA residues 59 to 74 inhibited A. phagocytophilum infection of host cells and binding to its receptor, sialyl Lewis x (sLex-capped P-selectin glycoprotein ligand 1. Molecular docking analyses predicted that OmpA residues G61 and K64 interact with the two sLex sugars that are important for infection, α2,3-sialic acid and α1,3-fucose. Amino acid substitution analyses demonstrated that K64 was necessary, and G61 was contributory, for recombinant OmpA to bind to host cells and competitively inhibit A. phagocytophilum infection. Adherence of OmpA to RF/6A endothelial cells, which express little to no sLex but express the structurally similar glycan, 6-sulfo-sLex, required α2,3-sialic acid and α1,3-fucose and was antagonized by 6-sulfo-sLex antibody. Binding and uptake of OmpA-coated latex beads by myeloid cells was sensitive to sialidase, fucosidase, and sLex antibody. The Asp14 binding domain was also defined, as antibody specific for residues 113 to 124 inhibited infection. Because OmpA, Asp14, and AipA each contribute to the infection process, it was rationalized that the most effective blocking approach would target all three. An antibody cocktail targeting the OmpA, Asp14, and AipA binding domains neutralized A. phagocytophilumbinding and infection of host cells. This study dissects OmpA-receptor interactions and demonstrates the effectiveness of binding domain-specific antibodies for blocking A. phagocytophilum infection

    Binary systems and their nuclear explosions

    Get PDF
    Peer ReviewedPreprin

    The critical care management of poor-grade subarachnoid haemorrhage

    Full text link

    Effects of a cognitive training on spatial learning and associated functional brain activations

    Get PDF
    BACKGROUND: Both cognitive and physical exercise have been discussed as promising interventions for healthy cognitive aging. The present study assessed the effects of cognitive training (spatial vs. perceptual training) and physical training (endurance training vs. non-endurance training) on spatial learning and associated brain activation in 33 adults (40–55 years). Spatial learning was assessed with a virtual maze task, and at the same time neural correlates were measured with functional magnetic resonance imaging (fMRI). RESULTS: Only the spatial training improved performance in the maze task. These behavioral gains were accompanied by a decrease in frontal and temporal lobe activity. At posttest, participants of the spatial training group showed lower activity than participants of the perceptual training group in a network of brain regions associated with spatial learning, including the hippocampus and parahippocampal gyrus. No significant differences were observed between the two physical intervention groups. CONCLUSIONS: Functional changes in neural systems associated with spatial navigation can be induced by cognitive interventions and seem to be stronger than effects of physical exercise in middle-aged adults

    Breakthrough in cardiac arrest: reports from the 4th Paris International Conference

    Get PDF
    corecore