13 research outputs found

    Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications

    Get PDF
    Less than half of the original two million square kilometers of the Cerrado vegetation remains standing, and there are still many uncertainties as to how to conserve and prioritize remaining areas effectively. A key limitation is the continuing lack of geographically-extensive evaluation of ecosystem-level properties across the biome. Here we sought to address this gap by comparing the woody vegetation of the typical cerrado of the Cerrado–Amazonia Transition with that of the core area of the Cerrado in terms of both tree diversity and vegetation biomass. We used 21 one-hectare plots in the transition and 18 in the core to compare key structural parameters (tree height, basal area, and above-ground biomass), and diversity metrics between the regions. We also evaluated the effects of temperature and precipitation on biomass, as well as explored the species diversity versus biomass relationship. We found, for the first time, both that the typical cerrado at the transition holds substantially more biomass than at the core, and that higher temperature and greater precipitation can explain this difference. By contrast, plot-level alpha diversity was almost identical in the two regions. Finally, contrary to some theoretical expectations, we found no positive relationship between species diversity and biomass for the Cerrado woody vegetation. This has implications for the development of effective conservation measures, given that areas with high biomass and importance for the compensation of greenhouse gas emissions are often not those with the greatest diversity

    Is the herb-shrub composition of veredas (Brazilian palm swamps) distinguishable?

    Get PDF
    <div><p>ABSTRACT Vereda (Brazilian palm swamp) is a poorly known savannic phytophysiognomy that occurs on moist soils with high herb-shrub floristic richness. This study aimed to document the herb-shrub species of veredas of the Estação Ecológica Serra Geral do Tocantins - EESGTO, and compare this flora with other veredas in Brazil. Furthermore, we assessed the similarity of the herb-shrub flora of the studied veredas with that of inventories of other savannas and grasslands in order to evaluate whether veredas possess an exclusive flora. Ordination analysis was performed to understand the floristic relationship among these areas. We recorded 213 species, 105 genera and 49 families at EESGTO, including five new floral records for the Cerrado and 78 for the state of Tocantins. The floristic similarity among veredas at EESGTO and the other sites was low. For all sites, a total of 1,324 species were recorded, of which 342 were unique to veredas and 187 unique to moist grasslands (campos limpos úmidos). After reviewing databases, 14.3 % of these species remained exclusive to veredas and moist grasslands. The ordination analysis indicated a gradient in floristic composition from wet to dry phytophysiognomies. In conclusion, we recognize a flora that distinguishes veredas from other Cerrado phytophysiognomies.</p></div

    Diapause in a tropical oil-collecting bee: molecular basis unveiled by RNA-Seq

    No full text
    Abstract Background Diapause is a natural phenomenon characterized by an arrest in development that ensures the survival of organisms under extreme environmental conditions. The process has been well documented in arthropods. However, its molecular basis has been mainly studied in species from temperate zones, leaving a knowledge gap of this phenomenon in tropical species. In the present study, the Neotropical and solitary bee Tetrapedia diversipes was employed as a model for investigating diapause in species from tropical zones. Being a bivoltine insect, Tetrapedia diversipes produce two generations of offspring per year. The first generation, normally born during the wet season, develops faster than individuals from the second generation, born after the dry season. Furthermore, it has been shown that the development of the progeny, of the second generation, is halted at the 5th larval instar, and remains in larval diapause during the dry season. Towards the goal of gaining a better understanding of the diapause phenomenon we compared the global gene expression pattern, in larvae, from both reproductive generations and during diapause. The results demonstrate that there are similarities in the observed gene expression patterns to those already described for temperate climate models, and also identify diapause-related genes that have not been previously reported in the literature. Results The RNA-Seq analysis identified 2275 differentially expressed transcripts, of which 1167 were annotated. Of these genes, during diapause, 352 were upregulated and 815 were downregulated. According to their biological functions, these genes were categorized into the following groups: cellular detoxification, cytoskeleton, cuticle, sterol and lipid metabolism, cell cycle, heat shock proteins, immune response, circadian clock, and epigenetic control. Conclusion Many of the identified genes have already been described as being related to diapause; however, new genes were discovered, for the first time, in this study. Among those, we highlight: Niemann-Pick type C1, NPC2 and Acyl-CoA binding protein homolog (all involved in ecdysteroid synthesis); RhoBTB2 and SASH1 (associated with cell cycle regulation) and Histone acetyltransferase KAT7 (related to epigenetic transcriptional regulation). The results presented here add important findings to the understanding of diapause in tropical species, thus increasing the comprehension of diapause-related molecular mechanisms
    corecore