144 research outputs found

    Nodal quasiparticle meltdown in ultra-high resolution pump-probe angle-resolved photoemission

    Full text link
    High-TcT_c cuprate superconductors are characterized by a strong momentum-dependent anisotropy between the low energy excitations along the Brillouin zone diagonal (nodal direction) and those along the Brillouin zone face (antinodal direction). Most obvious is the d-wave superconducting gap, with the largest magnitude found in the antinodal direction and no gap in the nodal direction. Additionally, while antinodal quasiparticle excitations appear only below TcT_c, superconductivity is thought to be indifferent to nodal excitations as they are regarded robust and insensitive to TcT_c. Here we reveal an unexpected tie between nodal quasiparticles and superconductivity using high resolution time- and angle-resolved photoemission on optimally doped Bi2_2Sr2_2CaCu2_2O8+ÎŽ_{8+\delta}. We observe a suppression of the nodal quasiparticle spectral weight following pump laser excitation and measure its recovery dynamics. This suppression is dramatically enhanced in the superconducting state. These results reduce the nodal-antinodal dichotomy and challenge the conventional view of nodal excitation neutrality in superconductivity.Comment: 7 pages, 3 figure. To be published in Nature Physic

    Mechanical Impedance and Its Relations to Motor Control, Limb Dynamics, and Motion Biomechanics

    Get PDF

    Observation of triple J/ψ meson production in proton-proton collisions

    Get PDF
    Data availability: Tabulated results are provided in the HEPData record for this analysis71. Release and preservation of data used by the CMS Collaboration as the basis for publications is guided by the CMS policy as stated in CMS data preservation, re-use and open access policy.Code availability: The CMS core software is publically available at https://github.com/cms-sw/cmssw.Copyright . Protons consist of three valence quarks, two up-quarks and one down-quark, held together by gluons and a sea of quark-antiquark pairs. Collectively, quarks and gluons are referred to as partons. In a proton-proton collision, typically only one parton of each proton undergoes a hard scattering – referred to as single-parton scattering – leaving the remainder of each proton only slightly disturbed. Here, we report the study of double- and triple-parton scatterings through the simultaneous production of three J/ψ mesons, which consist of a charm quark-antiquark pair, in proton-proton collisions recorded with the CMS experiment at the Large Hadron Collider. We observed this process – reconstructed through the decays of J/ψ mesons into pairs of oppositely charged muons – with a statistical significance above five standard deviations. We measured the inclusive fiducial cross-section to be 272+141−104(stat)±17(syst)fb, and compared it to theoretical expectations for triple-J/ψ meson production in single-, double- and triple-parton scattering scenarios. Assuming factorization of multiple hard-scattering probabilities in terms of single-parton scattering cross-sections, double- and triple-parton scattering are the dominant contributions for the measured process.SCOAP3.Change history: 27 February 2023A Correction to this paper has been published: https://doi.org/10.1038/s41567-023-01992-

    Search for long-lived particles decaying to leptons with large impact parameter in proton-proton collisions at root s=13 TeV

    Get PDF
    Copyright © CERN for the benefit of the CMS collaboration 2022. A search for new long-lived particles decaying to leptons using proton–proton collision data produced by the CERN LHC at s√=13TeV is presented. Events are selected with two leptons (an electron and a muon, two electrons, or two muons) that both have transverse impact parameter values between 0.01 and 10cm and are not required to form a common vertex. Data used for the analysis were collected with the CMS detector in 2016, 2017, and 2018, and correspond to an integrated luminosity of 118 (113)fb−1 in the ee channel (eÎŒ and ΌΌ channels). The search is designed to be sensitive to a wide range of models with displaced eÎŒ, ee, and ΌΌ final states. The results constrain several well-motivated models involving new long-lived particles that decay to displaced leptons. For some areas of the available phase space, these are the most stringent constraints to date.SCOAP3
    • 

    corecore