190 research outputs found
Screening for pickiness - a validation study
Picky eating is prevalent in childhood and is associated with negative health outcomes. Therefore early detection of pickiness is pertinent. Because no psychometric measure of picky/fussy eating has been validated, we aimed to examine the screening efficiency of the 6-item ‘Food Fussiness’ (FF) scale from the Children’s Eating Behavior Questionnaire using structured psychiatric interviews (the Preschool Age Psychiatric Interview), providing meaningful cut-off values based on a large, representative sample of Norwegian 6 year olds (n = 752). Screening efficiency was evaluated using receiver operating characteristic curve analysis, revealing excellent discrimination. The cut-point maximizing the sum of sensitivity and specificity for the scale was found at a score of 3.33 for severe cases and 3.00 when both moderate and severe pickiness were included. The results suggest that the FF scale may provide a tool for identification of clinically significant picky eating, although further assessment may be needed to separate moderate from severe cases
Structural and biochemical characterization of the exopolysaccharide deacetylase Agd3 required for Aspergillus fumigatus biofilm formation
The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Deletion of a gene encoding a putative deacetylase, Agd3, leads to defects in GAG deacetylation, biofilm formation, and virulence. Here, we show that Agd3 deacetylates GAG in a metal-dependent manner, and is the founding member of carbohydrate esterase family CE18. The active site is formed by four catalytic motifs that are essential for activity. The structure of Agd3 includes an elongated substrate-binding cleft formed by a carbohydrate binding module (CBM) that is the founding member of CBM family 87. Agd3 homologues are encoded in previously unidentified putative bacterial exopolysaccharide biosynthetic operons and in other fungal genomes. The exopolysaccharide galactosaminogalactan (GAG) is an important virulence factor of the fungal pathogen Aspergillus fumigatus. Here, the authors study an A. fumigatus enzyme that deacetylates GAG in a metal-dependent manner and constitutes a founding member of a new carbohydrate esterase family.Bio-organic Synthesi
Discovery and characterization of a new family of lytic polysaccharide monooxygenases
Lytic polysaccharide monooxygenases (LPMOs) are a recently discovered class of enzymes capable of oxidizing recalcitrant polysaccharides. They are attracting considerable attention owing to their potential use in biomass conversion, notably in the production of biofuels. Previous studies have identified two discrete sequence-based families of these enzymes termed AA9 (formerly GH61) and AA10 (formerly CBM33). Here, we report the discovery of a third family of LPMOs. Using a chitin-degrading exemplar from Aspergillus oryzae, we show that the three-dimensional structure of the enzyme shares some features of the previous two classes of LPMOs, including a copper active center featuring the 'histidine brace' active site, but is distinct in terms of its active site details and its EPR spectroscopy. The newly characterized AA11 family expands the LPMO clan, potentially broadening both the range of potential substrates and the types of reactive copper-oxygen species formed at the active site of LPMOs
Accelerated discovery of two crystal structure types in a complex inorganic phase field
The discovery of new materials is hampered by the lack of efficient approaches to the exploration of both the large number of possible elemental compositions for such materials, and of the candidate structures at each composition1. For example, the discovery of inorganic extended solid structures has relied on knowledge of crystal chemistry coupled with time-consuming materials synthesis with systematically varied elemental ratios2,3. Computational methods have been developed to guide synthesis by predicting structures at specific compositions4,5,6 and predicting compositions for known crystal structures7,8, with notable successes9,10. However, the challenge of finding qualitatively new, experimentally realizable compounds, with crystal structures where the unit cell and the atom positions within it differ from known structures, remains for compositionally complex systems. Many valuable properties arise from substitution into known crystal structures, but materials discovery using this approach alone risks both missing best-in-class performance and attempting design with incomplete knowledge8,11. Here we report the experimental discovery of two structure types by computational identification of the region of a complex inorganic phase field that contains them. This is achieved by computing probe structures that capture the chemical and structural diversity of the system and whose energies can be ranked against combinations of currently known materials. Subsequent experimental exploration of the lowest-energy regions of the computed phase diagram affords two materials with previously unreported crystal structures featuring unusual structural motifs. This approach will accelerate the systematic discovery of new materials in complex compositional spaces by efficiently guiding synthesis and enhancing the predictive power of the computational tools through expansion of the knowledge base underpinning them
Molecular architecture of the Nup84–Nup145C–Sec13 edge element in the nuclear pore complex lattice
Nuclear pore complexes (NPCs) facilitate all nucleocytoplasmic transport. These massive protein assemblies are modular, with a stable structural scaffold supporting more dynamically attached components. The scaffold is made from multiple copies of the heptameric Y complex and the heteromeric Nic96 complex. We previously showed that members of these core subcomplexes specifically share an ACE1 fold with Sec31 of the COPII vesicle coat, and we proposed a lattice model for the NPC based on this commonality. Here we present the crystal structure of the heterotrimeric 134-kDa complex of Nup84–Nup145C–Sec13 of the Y complex. The heterotypic ACE1 interaction of Nup84 and Nup145C is analogous to the homotypic ACE1 interaction of Sec31 that forms COPII lattice edge elements and is inconsistent with the alternative 'fence-like' NPC model. We construct a molecular model of the Y complex and compare the architectural principles of COPII and NPC lattices.National Institutes of Health (U.S.) (Grant GM77537)Pew Charitable Trusts (Scholar Award
The Hexamer Structure of the Rift Valley Fever Virus Nucleoprotein Suggests a Mechanism for its Assembly into Ribonucleoprotein Complexes
Rift Valley fever virus (RVFV), a Phlebovirus with a genome consisting of three single-stranded RNA segments, is spread by infected mosquitoes and causes large viral outbreaks in Africa. RVFV encodes a nucleoprotein (N) that encapsidates the viral RNA. The N protein is the major component of the ribonucleoprotein complex and is also required for genomic RNA replication and transcription by the viral polymerase. Here we present the 1.6 Å crystal structure of the RVFV N protein in hexameric form. The ring-shaped hexamers form a functional RNA binding site, as assessed by mutagenesis experiments. Electron microscopy (EM) demonstrates that N in complex with RNA also forms rings in solution, and a single-particle EM reconstruction of a hexameric N-RNA complex is consistent with the crystallographic N hexamers. The ring-like organization of the hexamers in the crystal is stabilized by circular interactions of the N terminus of RVFV N, which forms an extended arm that binds to a hydrophobic pocket in the core domain of an adjacent subunit. The conformation of the N-terminal arm differs from that seen in a previous crystal structure of RVFV, in which it was bound to the hydrophobic pocket in its own core domain. The switch from an intra- to an inter-molecular interaction mode of the N-terminal arm may be a general principle that underlies multimerization and RNA encapsidation by N proteins from Bunyaviridae. Furthermore, slight structural adjustments of the N-terminal arm would allow RVFV N to form smaller or larger ring-shaped oligomers and potentially even a multimer with a super-helical subunit arrangement. Thus, the interaction mode between subunits seen in the crystal structure would allow the formation of filamentous ribonucleocapsids in vivo. Both the RNA binding cleft and the multimerization site of the N protein are promising targets for the development of antiviral drugs
Effect of the G72 (DAOA) putative risk haplotype on cognitive functions in healthy subjects
<p>Abstract</p> <p>Background</p> <p>In the last years, several susceptibility genes for psychiatric disorders have been identified, among others <it>G72 </it>(also named D-amino acid oxidase activator, DAOA). Typically, the high-risk variant of a vulnerability gene is associated with decreased cognitive functions already in healthy individuals. In a recent study however, a positive effect of the high-risk variant of <it>G72 </it>on verbal working memory was reported. In the present study, we therefore examined the relationship between <it>G72 </it>genotype status and a broad range of cognitive functions in 423 healthy individuals.</p> <p>Methods</p> <p>The <it>G72 </it>carrier status was assessed by the two single nucleotide polymorphisms (SNPs) M23 and M24. Subjects were divided into three risk groups (low, intermediate and high risk).</p> <p>Results</p> <p><it>G72 </it>status influenced a number of cognitive functions, such as verbal working memory, attention, and, at a trend level, spatial working memory and executive functions. Interestingly, the high-risk allele carriers scored better than one or even both other groups.</p> <p>Conclusion</p> <p>Our data show that the putative high-risk haplotype (i.e. homozygote C/C-allele carriers in SNP M23 and homozygote T/T-allele carriers in SNP M24) is in healthy individuals not necessarily associated with worse performance in cognitive functions, but even with better performance in some domains. Further work is required to identify the mechanisms of <it>G72 </it>on brain functions.</p
Depression and post-traumatic stress disorder after aneurysmal subarachnoid haemorrhage in relation to lifetime psychiatric morbidity
Posttraumatic Stress Disorder Prevalence and Risk of Recurrence in Acute Coronary Syndrome Patients: A Meta-analytic Review
BACKGROUND:Acute coronary syndromes (ACS; myocardial infarction or unstable angina) can induce posttraumatic stress disorder (PTSD), and ACS-induced PTSD may increase patients' risk for subsequent cardiac events and mortality. OBJECTIVE:To determine the prevalence of PTSD induced by ACS and to quantify the association between ACS-induced PTSD and adverse clinical outcomes using systematic review and meta-analysis. DATA SOURCES:Articles were identified by searching Ovid MEDLINE, PsycINFO, and Scopus, and through manual search of reference lists. METHODOLOGY/PRINCIPAL FINDINGS:Observational cohort studies that assessed PTSD with specific reference to an ACS event at least 1 month prior. We extracted estimates of the prevalence of ACS-induced PTSD and associations with clinical outcomes, as well as study characteristics. We identified 56 potentially relevant articles, 24 of which met our criteria (N = 2383). Meta-analysis yielded an aggregated prevalence estimate of 12% (95% confidence interval [CI], 9%-16%) for clinically significant symptoms of ACS-induced PTSD in a random effects model. Individual study prevalence estimates varied widely (0%-32%), with significant heterogeneity in estimates explained by the use of a screening instrument (prevalence estimate was 16% [95% CI, 13%-20%] in 16 studies) vs a clinical diagnostic interview (prevalence estimate was 4% [95% CI, 3%-5%] in 8 studies). The aggregated point estimate for the magnitude of the relationship between ACS-induced PTSD and clinical outcomes (ie, mortality and/or ACS recurrence) across the 3 studies that met our criteria (N = 609) suggested a doubling of risk (risk ratio, 2.00; 95% CI, 1.69-2.37) in ACS patients with clinically significant PTSD symptoms relative to patients without PTSD symptoms. CONCLUSIONS/SIGNIFICANCE:This meta-analysis suggests that clinically significant PTSD symptoms induced by ACS are moderately prevalent and are associated with increased risk for recurrent cardiac events and mortality. Further tests of the association of ACS-induced PTSD and clinical outcomes are needed
A system dynamics model of clinical decision thresholds for the detection of developmental-behavioral disorders
- …
