120 research outputs found

    The Missing Medians:Exclusion of Ordinal Data from Meta-Analyses

    Get PDF
    BACKGROUND:Meta-analyses are considered the gold standard of evidence-based health care, and are used to guide clinical decisions and health policy. A major limitation of current meta-analysis techniques is their inability to pool ordinal data. Our objectives were to determine the extent of this problem in the context of neurological rating scales and to provide a solution. METHODS:Using an existing database of clinical trials of oral neuroprotective therapies, we identified the 6 most commonly used clinical rating scales and recorded how data from these scales were reported and analysed. We then identified systematic reviews of studies that used these scales (via the Cochrane database) and recorded the meta-analytic techniques used. Finally, we identified a statistical technique for calculating a common language effect size measure for ordinal data. RESULTS:We identified 103 studies, with 128 instances of the 6 clinical scales being reported. The majority- 80%-reported means alone for central tendency, with only 13% reporting medians. In analysis, 40% of studies used parametric statistics alone, 34% of studies employed non-parametric analysis, and 26% did not include or specify analysis. Of the 60 systematic reviews identified that included meta-analysis, 88% used mean difference and 22% employed difference in proportions; none included rank-based analysis. We propose the use of a rank-based generalised odds ratio (WMW GenOR) as an assumption-free effect size measure that is easy to compute and can be readily combined in meta-analysis. CONCLUSION:There is wide scope for improvement in the reporting and analysis of ordinal data in the literature. We hope that adoption of the WMW GenOR will have the dual effect of improving the reporting of data in individual studies while also increasing the inclusivity (and therefore validity) of meta-analyses

    Comparative analyses of the complete genome sequences of Pierce's disease and citrus variegated chlorosis strains of Xylella fastidiosa

    Get PDF
    Xylella fastidiosa is a xylem-dwelling, insect-transmitted, gamma-proteobacterium that causes diseases in many plants, including grapevine, citrus, periwinkle, almond, oleander, and coffee. X. fastidiosa has an unusually broad host range, has an extensive geographical distribution throughout the American continent, and induces diverse disease phenotypes. Previous molecular analyses indicated three distinct groups of X.fastidiosa isolates that were expected to be genetically divergent. Here we report the genome sequence of X. fastidiosa (Temecula strain), isolated from a naturally infected grapevine with Pierce's disease (PD) in a wine-grape-growing region of California. Comparative analyses with a previously sequenced X.fastidiosa strain responsible for citrus variegated chlorosis (CVC) revealed that 98% of the PD X.fastidiosa Temecula genes are shared with the CVC X. fastidiosa strain 9a5c genes. Furthermore, the average amino acid identity of the open reading frames in the strains is 95.7%. Genomic differences are limited to phage-associated chromosomal rearrangements and deletions that also account for the strain-specific genes present in each genome. Genomic islands, one in each genome, were identified, and their presence in other X.fastidiosa strains was analyzed. We conclude that these two organisms have identical metabolic functions and are likely to use a common set of genes in plant colonization and pathogenesis, permitting convergence of functional genomic strategies.18531018102
    • …
    corecore