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Abstract

Background

Meta-analyses are considered the gold standard of evidence-based health care, and are

used to guide clinical decisions and health policy. A major limitation of current meta-analysis

techniques is their inability to pool ordinal data. Our objectives were to determine the extent

of this problem in the context of neurological rating scales and to provide a solution.

Methods

Using an existing database of clinical trials of oral neuroprotective therapies, we identified

the 6 most commonly used clinical rating scales and recorded how data from these scales

were reported and analysed. We then identified systematic reviews of studies that used

these scales (via the Cochrane database) and recorded the meta-analytic techniques used.

Finally, we identified a statistical technique for calculating a common language effect size

measure for ordinal data.

Results

We identified 103 studies, with 128 instances of the 6 clinical scales being reported. The

majority– 80%–reported means alone for central tendency, with only 13% reporting

medians. In analysis, 40% of studies used parametric statistics alone, 34% of studies

employed non-parametric analysis, and 26% did not include or specify analysis. Of the 60

systematic reviews identified that included meta-analysis, 88% used mean difference

and 22% employed difference in proportions; none included rank-based analysis. We pro-

pose the use of a rank-based generalised odds ratio (WMWGenOR) as an assumption-

free effect size measure that is easy to compute and can be readily combined in meta-

analysis.

Conclusion

There is wide scope for improvement in the reporting and analysis of ordinal data in the liter-

ature. We hope that adoption of the WMWGenOR will have the dual effect of improving the
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reporting of data in individual studies while also increasing the inclusivity (and therefore

validity) of meta-analyses.

Introduction
Combining results from multiple studies to more powerfully estimate effect size can be very
informative. Meta-analysis, however, has several well documented weaknesses: bias in the orig-
inal studies will flow through to the pooled data, and non-publication of negative studies (the
‘file drawer’ problem [1]) can lead to over-estimation of effect. Less well documented is the
omission of ordinal data from meta-analyses (the ‘missing medians’ problem). In reporting
study-specific summary statistics, many authors present means and standard deviations on the
assumption that their data are continuous and normally distributed. Deriving effect sizes from
such studies and pooling them in meta-analysis is straightforward [2]. In many cases, however,
outcome measures are ordinal rather than continuous; a scale’s categories have a natural order,
but it cannot be assumed that differences between the categories are equivalent. This is particu-
larly common in clinical research, where scales are designed to evaluate impairment and be
clinically meaningful. One example is in the stroke literature, where the modified Rankin Scale
is the primary outcome of choice in the vast majority of trials. It is a measure of functional
disability, and has a 7-point ordinal scale ranging from 0 (no symptoms) to 6 (dead). By gener-
ating disability weights fromWHO Global Burden of Disease data, Hong & Saver [3] demon-
strated empirically that the points on the scale are not equally spaced. Yet prominent recent
stroke trials have summarised ordinal modified Rankin Scale data using means [4]. Addition-
ally, many clinical scales suffer from ceiling or floor effects, yielding data that are not normally
distributed. Interpreting means and standard deviations in these conditions is problematic;
medians and inter-quartile ranges are statistically more valid.

These reporting considerations have important implications for meta-analysis. Where ordi-
nal data are reported appropriately in individual studies, they are often excluded from meta-
analysis due to the difficulty in pooling them. Alternatively, where study authors report means
and standard deviations, often inappropriately, these data can be included in meta-analysis
but the validity of the pooled results is questionable. Meta-analytical results are heavily influ-
enced by treatment of outliers and by parametric versus non-parametric estimation [5].
The Cochrane collaboration acknowledge the problem with meta-analysis of ordinal or non-
parametric data in their handbook (“difficulties will be encountered if studies have summarised
their results using medians”, section 9.2.4[2]), but do not propose a solution. In practice, inves-
tigators often dichotomise data from shorter ordinal scales, and treat data from longer ordinal
scales as continuous. Both of these approaches are sub-optimal. Dichotomising scales necessi-
tates a loss of detail, and participants close to but on opposite sides of the split are characterised
as very different rather than very similar. Statistical power is lost: a median split has been
equated to discarding one-third of the data [6]. Treating data as continuous implies a consis-
tent relationship between each level of the scale, which is not true of ordinal scales, and
assumptions of normality are often violated. In the context of meta-analysis, it may be argued
that, due to central limit theorem, mean values across a group of studies (and hence mean dif-
ferences) will be approximately normally distributed, rendering any concerns about violation
of normality invalid. Although this may be true, it fails to acknowledge that it is inappropriate
to use means as a measure of central tendency for scales where we know only the order of levels
on the scale, and not the distance between them.

Exclusion of Ordinal Data fromMeta-Analyses
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Attempts to address these limitations were made more than 30 years ago. Kraemer and
Andrews published a paper entitled “A non-parametric technique for effect size calculation” in
1982 [7]. This was followed in 1983 by a technical report from Hedges and Olkin entitled
“Nonparametric estimators of effect size in meta-analysis” [8]. Yet there remains little agree-
ment on how to pool ordinal data appropriately in meta-analysis. Some have suggested using a
proportional odds model for combining data from ordinal scales [9,10], although this assumes
a consistent relationship between levels on the scale. Others have developed techniques to esti-
mate mean and standard deviation from the median and range [11,12], but this is an inexact
solution, with estimates affected by sample size and normality of the data. Data may be pooled
based on the Fisher’s exact test rather than the t-statistic [13], though this requires dichotomi-
sation. A Bayesian approach that is not reliant on an assumption of normality has been pro-
posed [14], but this necessitates complex modelling of the data.

Methods
First, to identify the most widely used clinical rating scales, we analysed all the studies included
in a systematic review of clinical trials of oral neuroprotective therapies in multiple sclerosis,
Alzheimer’s disease, amyotrophic-lateral sclerosis, Parkinson’s disease, and Huntington’s dis-
ease [15]. These studies provide an insight into the use of neurological rating scales; they may
not be representative of all conditions. We selected the 6 most common rating scales, and
extracted data from each of the individual studies that included these scales on (a) the measure
of central tendency reported and (b) the type of analysis used. Second, to assess how these data
are pooled in meta-analysis, we searched the Cochrane Database (in September 2013) for sys-
tematic reviews using each of the 6 rating scales as a keyword. For each of the relevant system-
atic reviews, we extracted data on the meta-analytic approach used. Third, we identified an
effect size measure for use in meta-analysis of ordinal data that is assumption-free and easy to
compute. To demonstrate feasibility, we generated mock data and used this effect size measure
in meta-analysis.

Results and Discussion

Reporting and analysis of individual study data
The 6 most commonly used rating scales were: the Mini-Mental State Examination (MMSE),
the Expanded Disability Status Scale (EDSS), the Unified Parkinson’s Disease Rating Scale
(UPDRS), the Alzheimer’s Disease Assessment Scale (ADAS), the Unified Huntington’s Dis-
ease Rating Scale (UHDRS) and the Amyotrophic Lateral Sclerosis Functional Rating Scale
(ALSFRS). Properties of these 6 scales are outlined in the boxed text (Box 1).

Across 103 studies, we identified 128 instances of scale data being reported (MMSE 34,
EDSS 27, UPDRS 26, ADAS-cog 20, UHDRS 11, ALSFRS 10). Of these, 7% did not include a
measure of central tendency, 13% reported medians (either alone or alongside means) and 80%
reported means alone (Fig 1).

Of the 128 instances of scale data being reported, 26% did not include analysis or did not
specify analysis type, 34% featured non-parametric (rank-based) analysis—either alone or
alongside other analysis, and 40% included parametric (reliant on assumption of normality)
analysis alone (Fig 2).

Meta-analysis of rating scale data
We identified 70 relevant systematic reviews (MMSE 24, EDSS 11, UPDRS 10, ADAS-cog 20,
UHDRS 1, ALSFRS 4), 60 of which incorporated meta-analysis. Of these 60, 88% included
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mean difference and 22% included difference in proportions (Fig 3). None included medians
or other rank-based effect size measures in their meta-analyses. In fact, across all the systematic
reviews, only a single study was identified that reported median difference as an outcome (on
the UPDRS) [25].

Why the status quo is a problem
In 4 out of every 5 studies, means were the single measure of central tendency reported, while
only approximately 1 in every 8 studies included medians. Approach to data analysis revealed
a mis-match; in studies where analyses were specified, almost half (46%) included a non-
parametric technique. Acknowledgement that the data may not conform to parametric

Box 1. Clinical Rating Scales.
MMSE: Cognitive screening tool scored out of 30 [16], often treated as a continuous
scale. Data are typically skewed towards ceiling, as illustrated in a post-stroke population
(median 26, IQR 22–27, skewness -1.09) [17].

EDSS: Ordinal rating scale widely used to evaluate function in multiple sclerosis [18].
Ranges from 0–10 in half-point increments. Distribution of EDSS scores is rarely normal,
with the predominant pattern being bimodal [19].

UPDRS: Ordinal rating scale widely used to assess function in Parkinson’s disease
[20]. Includes 42 items that are mostly scored on a 5 point scale (0 normal, 4 most
severe).

ADAS: Designed to screen for early Alzheimer’s disease. Includes a cognitive subscale
(ADAS-cog) [21]. ADAS-cog is scored from 0–70 and is generally treated as a continu-
ous scale.

UHDRS: Ordinal rating scale used to test function in Huntington’s disease [22]. Each
of its 6 components has a different scoring format; they are typically reported separately.

ALSFRS: Ordinal rating scale used to measure function in amyotrophic lateral sclero-
sis. Revised to ALSFRS-R [23]. Contains 12 items, scored from 0 (most severe) to 4 (nor-
mal). Data are often skewed, with>80% of patients classed as ‘mild’ or ‘moderate’ (>24)
[24].

Fig 1. Reporting of central tendency for the 6 clinical rating scales.

doi:10.1371/journal.pone.0145580.g001
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assumptions was stronger at the analysis stage than at the descriptive stage. Reliance on means,
standard deviations and standardised mean differences in the context of ordinal assessment
scales that often yield non-normally distributed data is likely to violate statistical assumptions
and bias interpretation of results. Yet correct reporting of medians and inter-quartile ranges
will disqualify the data from subsequent meta-analysis, not only reducing the available infor-
mation but potentially selecting out higher quality studies. What is required is a method for
reporting ordinal data that does not assume a certain underlying distribution, does not necessi-
tate dichotomisation, that facilitates pooling of results in meta-analysis, and does not inflict too
harsh a reporting burden on individual study authors.

A simple solution: The generalised odds ratio
In pursuit of our third aim, we propose the use of a rank-based generalised odds ratio as a non-
parametric equivalent to the standardised mean difference for use in meta-analysis. Agresti
[26] outlined a generalisation of the odds ratio (GenOR) for ordinal outcomes. The method
involves considering all possible pairs of observations, one from the treatment group and one
from the control group. Agresti’s GenOR measures the ratio of the probabilities that a ran-
domly chosen pair favours the treatment or control group. For example, if GenOR = 2, the clin-
ical interpretation is that “compared to a person who does not receive the treatment, you are
twice as likely to have a better outcome as you are to have a worse outcome.” Agresti’s GenOR

Fig 2. Approach to statistical analysis for the 6 clinical rating scales.

doi:10.1371/journal.pone.0145580.g002

Fig 3. Approach to pooling data from the 6 clinical rating scales in systematic reviews.

doi:10.1371/journal.pone.0145580.g003
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measure, however, discards data where observations are tied. This can involve discarding a
considerable amount of data, thus reducing precision in the estimate of treatment effect, and
potentially biasing clinical interpretation. If GenOR = 2 and 50% of the observations are tied,
the above interpretation still applies but is made more accurate with the addition of “. . .but
there's also a 50% chance you will have the same outcome.”

The proposed Wilcoxon-Mann-Whitney generalised odds ratio (WMWGenOR) follows
the same logic as Agresti’s GenOR but does not ignore the ties; tied observations are split
evenly between better and worse outcomes [27]. We have published full details on how to cal-
culate the WMWGenOR elsewhere [28] (S2 File). For a 2-group comparison, the WMW
GenOR can be used as a natural effect size measure to accompany the WMW test. Importantly,
the WMWGenOR can also be calculated for other outcomes, including continuous ones [27].
Interpretation is straightforward, as the odds-based measure can be directly translated to the
‘common language effect size’measure [29]. Assuming normally distributed data with similar
variances, this common language effect size can then be translated to the standardized mean
difference. For example, for a certain fixed sample size, if the probability that a randomly
selected person from the treatment group will score higher than a randomly selected person
from the control group is 0.58, this equates to a standardized mean difference of 0.3; a probabil-
ity of 0.71 equates to a standardized mean difference of 0.8 [30]. The WMWGenOR also has a
natural relationship to the Number-Needed-to-Treat calculated on an ordinal scale [31]. Con-
fidence intervals and p-values for WMWGenOR are implementable in any statistical software,
including standard spreadsheets, given the existence of conveniently computable closed-form
asymptotic expressions. Importantly, for the analysis of research trials where adjustment for
prognostic covariates is often recommended, these formulas easily extend to stratified analyses.

Where individual studies have computed the WMWGenOR, the ln(GenOR) and the stan-
dard error can be inserted directly into meta-analysis (e.g., usingmetan command in Stata).
While the sampling distribution of the odds ratio may be skewed, the sampling distribution of
the log odds ratio follows an approximately normal distribution [26]. Where individual studies
have not computed the WMWGenOR, it remains possible to calculate it retrospectively and
include the data in meta-analysis. This requires the following information: sample size of the
groups (N1, N2), Mann-Whitney U statistic and 2-tailed p-value. Ln(GenOR) is calculated as
Ln[(U/(N1�N2))/(1-(U/(N1�N2))] and standard error as ABS[Ln(GenOR)/Invnormal(1-p/2)].
Although the WMWGenOR is different to an odds ratio generated from a study with a binary
outcome, it can be meta-analysed and visually represented in forest plots in the same way.

Implementation: An example using mock EDSS data
Using the basic distribution of EDSS scores identified in a large multiple sclerosis study [19] as
a starting point, we generated mock data for a control group (sample 0) and 5 treatment groups
(samples 1–5). Each group consisted of 100 patients. Shapiro-Wilk tests indicated that distribu-
tion of data in all samples was significantly non-normal. The histograms of EDSS scores are
presented in Fig 4.

These data were used to simulate 5 studies, with EDSS scores compared between control
and treatment groups (Study 1: sample 0 versus sample 1, Study 2: sample 0 versus sample 2,
etc.). Using these raw data, we pooled the 5 studies in 2 different ways: (1) a typical random
effects meta-analysis based on the standardised mean difference (Fig 5), and (2) an ordinal
meta-analysis based on the WMWGenOR (Fig 6).

In practice, the WMWGenOR is rarely calculated at the study level and so this information
is unavailable to authors of systematic reviews. To provide a more realistic implementation, we
used the same mock data but assumed that only summary statistics were available from the 5
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Fig 4. Histograms of mock EDSS data in a control group (sample 0) and 5 treatment groups (samples
1–5).

doi:10.1371/journal.pone.0145580.g004

Fig 5. Random effects meta-analysis, based on standardised mean difference, of 5 simulated studies
usingmock EDSS data.

doi:10.1371/journal.pone.0145580.g005

Fig 6. Ordinal meta-analysis, based onWMWGenOR, of 5 simulated studies usingmock EDSS data.

doi:10.1371/journal.pone.0145580.g006
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‘studies’ (Table 1). These Mann-Whitney U and p-values were used to calculate WMWGen-
ORs, which were then combined in ordinal meta-analysis (Fig 7). Calculating WMWGenORs
retrospectively from summary data made no difference to effect sizes (compare Figs 6 and 7),
indicating that meta-analysis is feasible even when WMWGenORs are not reported at the
study level.

These forest plots show that ordinal data can be visually represented and interpreted using
meta-analysis in the same way as continuous or dichotomous data. WMWGenOR-based
meta-analysis is not only the more appropriate approach for ordinal data, in this case it was
more sensitive to group differences than the standardised mean difference approach (compare
Figs 5 and 6). In Study 3 (sample 0 versus sample 3), group difference was significant according
to Mann-Whitney U (p = 0.045) but not according to t-test (p = 0.073). It is often assumed that
parametric analyses are more likely to detect significant treatment effects, but this is not neces-
sarily true in the context of non-normal distributions.

Conclusions
Meta-analysis is a vital tool for research and clinical decision-making. At the individual study
level, it is important that ordinal data can be reported appropriately and not be excluded from
meta-analysis. Using means and standard deviations in the context of ordinal scales gives an
impression of exactness, but this is false precision; we do not know the distance between points
on the scale, only their order. Our results demonstrate that there is wide scope for improve-
ment in the reporting and analysis of ordinal and non-parametric data in the literature. A solu-
tion to this problem is the WMWGenOR. This odds-based effect size measure is assumption-
free, easy to compute and can be readily combined in meta-analysis. Such a probability-based

Table 1. Mock EDSS data: Summary statistics from the 5 ‘studies’.

Sample N Median (IQR) Mann-Whitney U (vs sample 0)

0 100 6.0 (2.5, 6.5)

1 100 4.25 (2.0, 6.0) 4155, z = -2.08 (p = .038)

2 100 6.0 (2.5, 6.5) 4782, z = -0.54 (p = .592)

3 100 4.5 (1.625, 6.375) 4186, z = -2.00 (p = .045)

4 100 5.25 (2.125, 6.5) 4490, z = -1.26 (p = .209)

5 100 5.75 (2.5, 6.5) 4764, z = -0.58 (p = .562)

doi:10.1371/journal.pone.0145580.t001

Fig 7. Ordinal meta-analysis, based onWMWGenOR calculated from summary statistics, of 5
simulated studies usingmock EDSS data.

doi:10.1371/journal.pone.0145580.g007
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effect size is not limited to ordinal data; it is easily applied to continuous data too. We hope
that adoption of the WMWGenOR will have the dual effect of improving the reporting of ordi-
nal data in individual studies while also increasing the inclusivity (and therefore validity) of
meta-analyses.
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