2,386 research outputs found

    Closing the sea surface mixed layer temperature budget from in situ observations alone: Operation Advection during BoBBLE

    Get PDF
    Sea surface temperature (SST) is a fundamental driver of tropical weather systems such as monsoon rainfall and tropical cyclones. However, understanding of the factors that control SST variability is lacking, especially during the monsoons when in situ observations are sparse. Here we use a ground-breaking observational approach to determine the controls on the SST variability in the southern Bay of Bengal. We achieve this through the first full closure of the ocean mixed layer energy budget derived entirely from in situ observations during the Bay of Bengal Boundary Layer Experiment (BoBBLE). Locally measured horizontal advection and entrainment contribute more significantly than expected to SST evolution and thus oceanic variability during the observation period. These processes are poorly resolved by state-of-the-art climate models, which may contribute to poor representation of monsoon rainfall variability. The novel techniques presented here provide a blueprint for future observational experiments to quantify the mixed layer heat budget on longer time scales and to evaluate these processes in models

    Using machine learning to advance synthesis and use of conservation and environmental evidence

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record. National Institute for Health ResearchScience for Nature and People Partnershi

    Yield of comparative genomic hybridization microarray in pediatric neurology practice

    Get PDF
    OBJECTIVE: The present study investigated the diagnostic yield of array comparative genomic hybridization (aCGH) in a large cohort of children with diverse neurologic disorders as seen in child neurology practice to test whether pathogenic copy number variants (CNVs) were more likely to be detected in specific neurologic phenotypes. METHODS: A retrospective cross-sectional analysis was performed on 555 children in whom a genetic etiology was suspected and who underwent whole-genome aCGH testing between 2006 and 2012. Neurologic phenotyping was performed using hospital medical records. An assessment of pathogenicity was made for each CNV, based on recent developments in the literature. RESULTS: Forty-seven patients were found to carry a pathogenic CNV, giving an overall diagnostic yield of 8.59%. Certain phenotypes predicted for the presence of a pathogenic CNV, including developmental delay (odds ratio [OR] 3.69 [1.30–10.51]), cortical visual impairment (OR 2.73 [1.18–6.28]), dysmorphism (OR 2.75 [1.38–5.50]), and microcephaly (OR 2.16 [1.01–4.61]). The combination of developmental delay/intellectual disability with dysmorphism and abnormal head circumference was also predictive for a pathogenic CNV (OR 2.86 [1.02–8.00]). For every additional clinical feature, there was an increased likelihood of detecting a pathogenic CNV (OR 1.18 [1.01–1.38]). CONCLUSIONS: the use of aCGH led to a pathogenic finding in 8.59% of patients. The results support the use of aCGH as a first tier investigation in children with diverse neurologic disorders, although whole-genome sequencing may replace aCGH as the detection method in the future. In particular, the yield was increased in children with developmental delay, dysmorphism, cortical visual impairment, and microcephaly

    Simultaneous quantification of 12 different nucleotides and nucleosides released from renal epithelium and in human urine samples using ion-pair reversed-phase HPLC

    Get PDF
    Nucleotides and nucleosides are not only involved in cellular metabolism but also act extracellularly via P1 and P2 receptors, to elicit a wide variety of physiological and pathophysiological responses through paracrine and autocrine signalling pathways. For the first time, we have used an ion-pair reversed-phase high-performance liquid chromatography ultraviolet (UV)-coupled method to rapidly and simultaneously quantify 12 different nucleotides and nucleosides (adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, adenosine, uridine triphosphate, uridine diphosphate, uridine monophosphate, uridine, guanosine triphosphate, guanosine diphosphate, guanosine monophosphate, guanosine): (1) released from a mouse renal cell line (M1 cortical collecting duct) and (2) in human biological samples (i.e., urine). To facilitate analysis of urine samples, a solid-phase extraction step was incorporated (overall recovery rate ? 98 %). All samples were analyzed following injection (100 ?l) into a Synergi Polar-RP 80 Å (250 × 4.6 mm) reversed-phase column with a particle size of 10 ?m, protected with a guard column. A gradient elution profile was run with a mobile phase (phosphate buffer plus ion-pairing agent tetrabutylammonium hydrogen sulfate; pH 6) in 2-30 % acetonitrile (v/v) for 35 min (including equilibration time) at 1 ml min(-1) flow rate. Eluted compounds were detected by UV absorbance at 254 nm and quantified using standard curves for nucleotide and nucleoside mixtures of known concentration. Following validation (specificity, linearity, limits of detection and quantitation, system precision, accuracy, and intermediate precision parameters), this protocol was successfully and reproducibly used to quantify picomolar to nanomolar concentrations of nucleosides and nucleotides in isotonic and hypotonic cell buffers that transiently bathed M1 cells, and urine samples from normal subjects and overactive bladder patients

    Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen

    Get PDF
    Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′- phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves upregulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment

    Clinical course, therapeutic responses and outcomes in relapsing MOG antibody-associated demyelination.

    Get PDF
    Abstract OBJECTIVE: We characterised the clinical course, treatment and outcomes in 59 patients with relapsing myelin oligodendrocyte glycoprotein (MOG) antibody-associated demyelination. METHODS: We evaluated clinical phenotypes, annualised relapse rates (ARR) prior and on immunotherapy and Expanded Disability Status Scale (EDSS), in 218 demyelinating episodes from 33 paediatric and 26 adult patients. RESULTS: The most common initial presentation in the cohort was optic neuritis (ON) in 54% (bilateral (BON) 32%, unilateral (UON) 22%), followed by acute disseminated encephalomyelitis (ADEM) (20%), which occurred exclusively in children. ON was the dominant phenotype (UON 35%, BON 19%) of all clinical episodes. 109/226 (48%) MRIs had no brain lesions. Patients were steroid responsive, but 70% of episodes treated with oral prednisone relapsed, particularly at doses <10\u2009mg daily or within 2 months of cessation. Immunotherapy, including maintenance prednisone (P=0.0004), intravenous immunoglobulin, rituximab and mycophenolate, all reduced median ARRs on-treatment. Treatment failure rates were lower in patients on maintenance steroids (5%) compared with non-steroidal maintenance immunotherapy (38%) (P=0.016). 58% of patients experienced residual disability (average follow-up 61 months, visual loss in 24%). Patients with ON were less likely to have sustained disability defined by a final EDSS of 652 (OR 0.15, P=0.032), while those who had any myelitis were more likely to have sustained residual deficits (OR 3.56, P=0.077). CONCLUSION: Relapsing MOG antibody-associated demyelination is strongly associated with ON across all age groups and ADEM in children. Patients are highly responsive to steroids, but vulnerable to relapse on steroid reduction and cessation

    Maternal fecal microbiome predicts gestational age, birth weight and neonatal growth in rural Zimbabwe.

    Get PDF
    BACKGROUND: Preterm birth and low birth weight (LBW) affect one in ten and one in seven livebirths, respectively, primarily in low-income and middle-income countries (LMIC) and are major predictors of poor child health outcomes. However, both have been recalcitrant to public health intervention. The maternal intestinal microbiome may undergo substantial changes during pregnancy and may influence fetal and neonatal health in LMIC populations. METHODS: Within a subgroup of 207 mothers and infants enrolled in the SHINE trial in rural Zimbabwe, we performed shotgun metagenomics on 351 fecal specimens provided during pregnancy and at 1-month post-partum to investigate the relationship between the pregnancy gut microbiome and infant gestational age, birth weight, 1-month length-, and weight-for-age z-scores using extreme gradient boosting machines. FINDINGS: Pregnancy gut microbiome taxa and metabolic functions predicted birth weight and WAZ at 1 month more accurately than gestational age and LAZ. Blastoscystis sp, Brachyspira sp and Treponeme carriage were high compared to Western populations. Resistant starch-degraders were important predictors of birth outcomes. Microbiome capacity for environmental sensing, vitamin B metabolism, and signalling predicted increased infant birth weight and neonatal growth; while functions involved in biofilm formation in response to nutrient starvation predicted reduced birth weight and growth. INTERPRETATION: The pregnancy gut microbiome in rural Zimbabwe is characterized by resistant starch-degraders and may be an important metabolic target to improve birth weight. FUNDING: Bill and Melinda Gates Foundation, UK Department for International Development, Wellcome Trust, Swiss Agency for Development and Cooperation, US National Institutes of Health, and UNICEF
    corecore