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Using machine learning to advance synthe-
sis and use of conservation and environ-
mental evidence

Rapid growth in environmental research (Li & Zhao 2015)
presents a potential wealth of information for use in con-
servation decision making. Evidence synthesis methods
(e.g., systematic maps, reviews, meta-analyses) (Pullin &
Knight 2009) are critical for garnering actionable insight
from published research, yet they require levels of time
and funding that are prohibitive for meeting short pol-
icy windows (Elliott et al. 2014) and balancing trade-offs
between conservation planning and implementation.

In response, interest in machine learning to make syn-
theses faster and more efficient is growing (O’Mara-Eves
et al. 2015). Machine learning (ML) is based on the idea
that computers can be programmed to automatically per-
form a set of tasks by learning from a set of rules and
training data (Alpaydin 2014). For example, ML could
be used to synthesize information by semiautomatically
finding articles relevant to users and even to summarize
information—potentially reducing time and bias and im-
proving overall cost-effectiveness. Machine learning has
been widely applied in public health and syntheses of
medical information and is beginning to be trialed in
conservation and environmental topics (Westgate et al.
2015; Roll et al. 2017). Bearing the challenges in mind, we
endeavored to design a platform, powered by machine
learning, to improve on the manual synthesis process. We
partnered with DataKind, a data-science nonprofit orga-
nization, to create an open-access platform, Colandr, to
address 2 laborious stages of information synthesis: find-
ing relevant articles and extracting desired information.
Colandr has 2 learning systems, the first iteratively sorts
articles by relevance as specified by users and the second
aids in categorizing article topics (Fig. 1). To illustrate
Colandr’s functionality, we used data from a systematic
map on linkages between conservation and human well-
being (McKinnon et al. 2016).

Reviewers typically sort through thousands of search
results to find relevant articles, an inefficient process that
often takes several months. For example, our search on
conservation and human well-being recovered 35,000
hits, of which only 1,000 were relevant. System 1 in
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Colandr aims to speed up this process by dynamically
sorting the wheat from the chaff based on user input.
As users indicate whether citations are relevant or irrel-
evant, system 1 calculates the expected relevance of the
remaining search results and dynamically pushes more
relevant citations to the top. Colandr does this by search-
ing for patterns in the words around search terms (e.g., it
identifies the words and the order of those words around
protected area) and learning which of these combina-
tions are more relevant to the user, a method called
word2vec (Mikolov et al. 2013). System 1 achieved a
5-fold reduction in effort with our systematic map data
set. Manually, reviewers had to read 1,436 citations be-
fore they recovered 100 relevant articles. Using Colandr,
reviewers recovered 100 relevant citations after reading
only 250 citations.

After finding relevant studies, reviewers embark on
pulling out desired information (e.g., bibliographic, top-
ical, results) from each article. For example, we cate-
gorized articles according to topic area (e.g., types of
conservation and human well-being). Typically, review-
ers read entire articles to categorize them, a very time-
consuming process. System 2 is designed to deduce
these categories faster by pulling sentences from articles
that it identifies as relevant to each category with the
global vectors for word representations (GLoVE) model
(Pennington et al. 2014). For example, Colandr will dis-
play sentences related to the law and policy category
for users to read and help them decide whether to ac-
cept or reject that category. As users continue to cat-
egorize articles, model confidence improves. Although
this approach does not necessarily improve speed, it
can improve accuracy by catching missing or mislabeled
categories.

Colandr semiautomates the synthesis process, but it
continues to retain significant user oversight to ensure
transparency. This is critical because conservation and
environmental terms often have alternative meanings and
many synonyms. For example, there are many differ-
ent types of protected areas (e.g., key biodiversity ar-
eas, reserves, no-take zones, biospheres, national parks),
whereas there are only 2 ways to refer to influenza, in-
fluenza or flu. This heterogeneity makes it harder (but
not impossible) to make automatic predictions with high
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Figure 1. Colandr is composed of 2 systems in which user input iteratively trains the machine-learning models. In
system 1, articles are ranked by relevance. In system 2, topic labels are predicted for each article. Arrows illustrate
the flow of inputs and outputs during a systematic evidence synthesis project and where model training occurs.

levels of confidence. Thus, because this process is less
precise, Colandr aims to retain user oversight to ensure
that relevant articles are not missed.

Preliminary tests of Colandr demonstrate significant
improvements over a manual process. Although such as-
sessments have not been exhaustive, they demonstrate
Colandr’s potential to help advance evidence-based deci-
sion making in conservation by removing resource barri-
ers to conducting comprehensive evidence syntheses.
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