274 research outputs found

    Search for sterile neutrino mixing in the MINOS long-baseline experiment

    Get PDF
    A search for depletion of the combined flux of active neutrino species over a 735 km baseline is reported using neutral-current interaction data recorded by the MINOS detectors in the NuMI neutrino beam. Such a depletion is not expected according to conventional interpretations of neutrino oscillation data involving the three known neutrino flavors. A depletion would be a signature of oscillations or decay to postulated noninteracting sterile neutrinos, scenarios not ruled out by existing data. From an exposure of 3.18×1020 protons on target in which neutrinos of energies between ~500¿¿MeV and 120 GeV are produced predominantly as ¿µ, the visible energy spectrum of candidate neutral-current reactions in the MINOS far detector is reconstructed. Comparison of this spectrum to that inferred from a similarly selected near-detector sample shows that of the portion of the ¿µ flux observed to disappear in charged-current interaction data, the fraction that could be converting to a sterile state is less than 52% at 90% confidence level (C.L.). The hypothesis that active neutrinos mix with a single sterile neutrino via oscillations is tested by fitting the data to various models. In the particular four-neutrino models considered, the mixing angles ¿24 and ¿34 are constrained to be less than 11° and 56° at 90% C.L., respectively. The possibility that active neutrinos may decay to sterile neutrinos is also investigated. Pure neutrino decay without oscillations is ruled out at 5.4 standard deviations. For the scenario in which active neutrinos decay into sterile states concurrently with neutrino oscillations, a lower limit is established for the neutrino decay lifetime t3/m3>2.1×10-12¿¿s/eV at 90% C.L

    First observations of separated atmospheric nu_mu and bar{nu-mu} events in the MINOS detector

    Get PDF
    The complete 5.4 kton MINOS far detector has been taking data since the beginning of August 2003 at a depth of 2070 meters water-equivalent in the Soudan mine, Minnesota. This paper presents the first MINOS observations of nuµ and [overline nu ]µ charged-current atmospheric neutrino interactions based on an exposure of 418 days. The ratio of upward- to downward-going events in the data is compared to the Monte Carlo expectation in the absence of neutrino oscillations, giving Rup/downdata/Rup/downMC=0.62-0.14+0.19(stat.)±0.02(sys.). An extended maximum likelihood analysis of the observed L/E distributions excludes the null hypothesis of no neutrino oscillations at the 98% confidence level. Using the curvature of the observed muons in the 1.3 T MINOS magnetic field nuµ and [overline nu ]µ interactions are separated. The ratio of [overline nu ]µ to nuµ events in the data is compared to the Monte Carlo expectation assuming neutrinos and antineutrinos oscillate in the same manner, giving R[overline nu ][sub mu]/nu[sub mu]data/R[overline nu ][sub mu]/nu[sub mu]MC=0.96-0.27+0.38(stat.)±0.15(sys.), where the errors are the statistical and systematic uncertainties. Although the statistics are limited, this is the first direct observation of atmospheric neutrino interactions separately for nuµ and [overline nu ]µ

    A Single Argonaute Gene Participates in Exogenous and Endogenous RNAi and Controls Cellular Functions in the Basal Fungus Mucor circinelloides

    Get PDF
    The mechanism of RNAi is well described in metazoans where it plays a role in diverse cellular functions. However, although different classes of endogenous small RNAs (esRNAs) have been identified in fungi, their biological roles are poorly described due, in part, to the lack of phenotype of mutants affected in the biogenesis of these esRNAs. Argonaute proteins are one of the key components of the RNAi pathways, in which different members of this protein family participate in the biogenesis of a wide repertoire of esRNAs molecules. Here we identified three argonaute genes of the fungus Mucor circinelloides and investigated their participation in exogenous and endogenous RNAi. We found that only one of the ago genes, ago-1, is involved in RNAi during vegetative growth and is required for both transgene-induced RNA silencing and the accumulation of distinct classes of esRNAs derived from exons (ex-siRNAs). Classes I and II ex-siRNAs bind to Ago-1 to control mRNA accumulation of the target protein coding genes. Class III ex-siRNAs do not specifically bind to Ago-1, but requires this protein for their production, revealing the complexity of the biogenesis pathways of ex-siRNAs. We also show that ago-1 is involved in the response to environmental signals, since vegetative development and autolysis induced by nutritional stress are affected in ago-1(-) M. circinelloides mutants. Our results demonstrate that a single Ago protein participates in the production of different classes of esRNAs that are generated through different pathways. They also highlight the role of ex-siRNAs in the regulation of endogenous genes in fungi and expand the range of biological functions modulated by RNAi

    The Werner Syndrome Helicase/Exonuclease Processes Mobile D-Loops through Branch Migration and Degradation

    Get PDF
    RecQ DNA helicases are critical for preserving genome integrity. Of the five RecQ family members identified in humans, only the Werner syndrome protein (WRN) possesses exonuclease activity. Loss of WRN causes the progeroid disorder Werner syndrome which is marked by cancer predisposition. Cellular evidence indicates that WRN disrupts potentially deleterious intermediates in homologous recombination (HR) that arise in genomic and telomeric regions during DNA replication and repair. Precisely how the WRN biochemical activities process these structures is unknown, especially since the DNA unwinding activity is poorly processive. We generated biologically relevant mobile D-loops which mimic the initial DNA strand invasion step in HR to investigate whether WRN biochemical activities can disrupt this joint molecule. We show that WRN helicase alone can promote branch migration through an 84 base pair duplex region to completely displace the invading strand from the D-loop. However, substrate processing is altered in the presence of the WRN exonuclease activity which degrades the invading strand both prior to and after release from the D-loop. Furthermore, telomeric D-loops are more refractory to disruption by WRN, which has implications for tighter regulation of D-loop processing at telomeres. Finally, we show that WRN can recognize and initiate branch migration from both the 5′ and 3′ ends of the invading strand in the D-loops. These findings led us to propose a novel model for WRN D-loop disruption. Our biochemical results offer an explanation for the cellular studies that indicate both WRN activities function in processing HR intermediates

    Proviral HIV-genome-wide and pol-gene specific Zinc Finger Nucleases: Usability for targeted HIV gene therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection with HIV, which culminates in the establishment of a latent proviral reservoir, presents formidable challenges for ultimate cure. Building on the hypothesis that <it>ex-vivo </it>or even <it>in-vivo </it>abolition <it>or </it>disruption of HIV-gene/genome-action by target mutagenesis or excision can irreversibly abrogate HIV's innate fitness to replicate and survive, we previously identified the isoschizomeric bacteria restriction enzymes (REases) AcsI and ApoI as potent cleavers of the HIV-pol gene (11 and 9 times in HIV-1 and 2, respectively). However, both enzymes, along with others found to cleave across the entire HIV-1 genome, slice (SX) at palindromic sequences that are prevalent within the human genome and thereby pose the risk of host genome toxicity. A long-term goal in the field of R-M enzymatic therapeutics has thus been to generate synthetic restriction endonucleases with longer recognition sites limited in specificity to HIV. We aimed (i) to assemble and construct zinc finger <it>arrays </it>and <it>nucleases </it>(ZFN) with either proviral-HIV-pol gene or proviral-HIV-1 whole-genome specificity respectively, and (ii) to advance a model for pre-clinically testing lentiviral vectors (LV) that deliver and transduce either ZFN genotype.</p> <p>Methods and Results</p> <p><it>First, </it>we computationally generated the consensus sequences of (a) 114 dsDNA-binding zinc finger (Zif) <it>arrays </it>(ZFAs or Zif<sub>HIV-pol</sub>) and (b) two zinc-finger <it>nucleases </it>(ZFNs) which, unlike the AcsI and ApoI homeodomains, possess specificity to >18 base-pair sequences uniquely present within the HIV-pol gene (Zif<sub>HIV-pol</sub>F<sub>N</sub>). Another 15 ZFNs targeting >18 bp sequences within the complete HIV-1 proviral genome were constructed (Zif<sub>HIV-1</sub>F<sub>N</sub>). <it>Second, </it>a model for constructing lentiviral vectors (LVs) that deliver and transduce a diploid copy of either Zif<sub>HIV-pol</sub>F<sub>N </sub>or Zif<sub>HIV-1</sub>F<sub>N </sub>chimeric genes (termed <b>LV- 2xZif</b><sub><b>HIV-pol</b></sub><b>F</b><sub><b>N </b></sub>and <b>LV- 2xZif</b><sub><b>HIV-1</b></sub><b>F</b><sub><b>N, </b></sub>respectively) is proposed. <it>Third, </it>two preclinical models for controlled testing of the safety and efficacy of either of these LVs are described using active HIV-infected TZM-bl reporter cells (HeLa-derived JC53-BL cells) and latent HIV-infected cell lines.</p> <p>Conclusion</p> <p><b>LV-2xZif</b><sub><b>HIV-pol</b></sub><b>F</b><sub><b>N </b></sub>and <b>LV- 2xZif</b><sub><b>HIV-1</b></sub><b>F</b><sub><b>N </b></sub>may offer the <it>ex-vivo </it>or even <it>in-vivo </it>experimental opportunity to halt HIV replication functionally by directly abrogating HIV-pol-gene-action <it>or </it>disrupting/excising over 80% of the proviral HIV DNA from latently infected cells.</p

    Age-Related Memory Impairment Is Associated with Disrupted Multivariate Epigenetic Coordination in the Hippocampus

    Get PDF
    Mounting evidence linking epigenetic regulation to memory-related synaptic plasticity raises the possibility that altered chromatin modification dynamics might contribute to age-dependent cognitive decline. Here we show that the coordinated orchestration of both baseline and experience-dependent epigenetic regulation seen in the young adult hippocampus is lost in association with cognitive aging. Using a well-characterized rat model that reliably distinguishes aged individuals with significant memory impairment from others with normal memory, no single epigenetic mark or experience-dependent modification in the hippocampus uniquely predicted differences in the cognitive outcome of aging. The results instead point to a multivariate pattern in which modification-specific, bidirectional chromatin regulation is dependent on recent behavioral experience, chronological age, cognitive status, and hippocampal region. Whereas many epigenetic signatures were coupled with memory capacity among young adults and aged rats with preserved cognitive function, such associations were absent among aged rats with deficits in hippocampal memory. By comparison with the emphasis in current preclinical translational research on promoting chromatin modifications permissive for gene expression, our findings suggest that optimally successful hippocampal aging may hinge instead on enabling coordinated control across the epigenetic landscape

    Tissue Type-Specific Expression of the dsRNA-Binding Protein 76 and Genome-Wide Elucidation of Its Target mRNAs

    Get PDF
    Background: RNA-binding proteins accompany all steps in the life of mRNAs and provide dynamic gene regulatory functions for rapid adjustment to changing extra-or intracellular conditions. The association of RNA-binding proteins with their targets is regulated through changing subcellular distribution, post-translational modification or association with other proteins. Methodology: We demonstrate that the dsRNA binding protein 76 (DRBP76), synonymous with nuclear factor 90, displays inherently distinct tissue type-specific subcellular distribution in the normal human central nervous system and in malignant brain tumors of glial origin. Altered subcellular localization and isoform distribution in malignant glioma indicate that tumor-specific changes in DRBP76-related gene products and their regulatory functions may contribute to the formation and/or maintenance of these tumors. To identify endogenous mRNA targets of DRBP76, we performed RNA-immunoprecipitation and genome-wide microarray analyses in HEK293 cells, and identified specific classes of transcripts encoding critical functions in cellular metabolism. Significance: Our data suggest that physiologic DRBP76 expression, isoform distribution and subcellular localization are profoundly altered upon malignant transformation. Thus, the functional role of DRBP76 in co- or post-transcriptional gene regulation may contribute to the neoplastic phenotype

    How Servant Leadership Influences Organizational Citizenship Behavior: The Roles of LMX, Empowerment and Proactive Personality

    Get PDF
    While the link between servant leadership and organizational citizenship behavior (OCB) has been established, the individual-level mechanisms underlying this relationship and its boundary conditions remain poorly understood. In this study, we investigate the salience of the mediating mechanisms of leader-member exchange (LMX) and psychological empowerment in explaining the process by which servant leaders elicit discretionary OCB among followers. We also examine the role of followers’ proactive personality in moderating the indirect effects of servant leadership on OCB through LMX and psychological empowerment. Analysis of survey data collected from 446 supervisor-subordinate dyads in a large Chinese multinational firm suggests that while servant leadership is positively related to subordinate OCB through LMX, psychological empowerment does not explain any additional variance in OCB above that accounted for by LMX. Moderated mediation tests confirm the moderating effect of proactive personality through LMX. By providing a nuanced understanding of how and when servant leadership leads followers to go above and beyond their job role, our study assists organizations in deciding how to develop and utilize servant leaders in their organizations

    Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in BMC Genomics 11 (2010): 643, doi:10.1186/1471-2164-11-643.Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. There are orthologous relationships for some CYP1 s and some CYP3 s between zebrafish and human. In contrast, zebrafish have 47 CYP2 genes, compared to 16 in human, with only two (CYP2R1 and CYP2U1) recognized as orthologous based on sequence. Analysis of shared synteny identified CYP2 gene clusters evolutionarily related to mammalian CYP2 s, as well as unique clusters. Transcript profiling by microarray and quantitative PCR revealed that the majority of zebrafish CYP genes are expressed in embryos, with waves of expression of different sets of genes over the course of development. Transcripts of some CYP occur also in oocytes. The results provide a foundation for the use of zebrafish as a model in toxicological, pharmacological and chemical disease research.This work was supported by NIH grants R01ES015912 and P42ES007381 (Superfund Basic Research Program at Boston University) (to JJS). MEJ was a Guest Investigator at the Woods Hole Oceanographic Institution (WHOI) and was supported by grants from the Swedish research council Formas and Carl Trygger's foundation. AK was a Post-doctoral Fellow at WHOI, and was supported by a fellowship from the Japanese Society for Promotion of Science (JSPS). JZ and TP were Guest Students at the WHOI and were supported by a CAPES Ph.D. Fellowship and CNPq Ph.D. Sandwich Fellowship (JZ), and by a CNPq Ph.D. Fellowship (TP), from Brazil
    corecore