356 research outputs found

    Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae

    Get PDF
    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.Jennifer R. Bellon, Frank Schmid, Dimitra L. Capone, Barbara L. Dunn, Paul J. Chamber

    Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.

    Get PDF
    Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells

    Transformation and analysis of tobacco plant var Petit havana with T-urf13 gene under anther-specific TA29 promoter

    Get PDF
    T-urf13, a well-documented cms-associated gene from maize, has been shown to render methomyl sensitivity to heterologous systems like rice, yeast and bacteria when expressed constitutively. Since these transgenic plants were fertile, it was hypothesized that T-urf13 gene if expressed in anthers may result in male sterility that could be used for hybrid seed production. Hence, this work was aimed at analysing whether T-urf13 gene when expressed in anthers can result in male sterile plants or requires methomyl treatment to cause male sterility (controllable). This is the first report of transformation of tobacco with T-urf13 gene under anther-specific promoter (TA29) with or without mitochondrial targeting sequence. Most of the transgenic plants obtained were fertile; this was surprising as many male sterile plants were expected as T-urf13 gene is a cms associated gene. Our results suggest that it may not be possible to obtain male sterility by expressing URF13 in the anther by itself or by methomyl application

    Stability and inheritance of endosperm-specific expression of two transgenes in progeny from crossing independently transformed barley plants

    Get PDF
    To study stability and inheritance of two different transgenes in barley, we crossed a homozygous T8 plant, having uidA (or gus) driven by the barley endosperm-specific B1-hordein promoter (localized in the near centromeric region of chromosome 7H) with a second homozygous T4 plant, having sgfp(S65T) driven by the barley endosperm-specific D-hordein promoter (localized on the subtelomeric region of chromosome 2H). Both lines stably expressed the two transgenes in the generations prior to the cross. Three independently crossed F1 progeny were analyzed by PCR for both uidA and sgfp(S65T) in each plant and functional expression of GUS and GFP in F2 seeds followed a 3:1 Mendelian segregation ratio and transgenes were localized by FISH to the same location as in the parental plants. FISH was used to screen F2 plants for homozygosity of both transgenes; four homozygous plants were identified from the two crossed lines tested. FISH results showing presence of transgenes were consistent with segregation ratios of expression of both transgenes, indicating that the two transgenes were expressed without transgene silencing in homozygous progeny advanced to the F3 and F4 generations. Thus, even after crossing independently transformed, homozygous parental plants containing a single, stably expressed transgene, progeny were obtained that continued to express multiple transgenes through generation advance. Such stability of transgenes, following outcrossing, is an important attribute for trait modification and for gene flow studies

    Karyotype differentiation of four Cestrum species (Solanaceae) revealed by fluorescent chromosome banding and FISH

    Get PDF
    The karyotypes of four South American species of Cestrum (C. capsulare,C. corymbosum,C. laevigatum and C. megalophylum) were studied using conventional staining, C-CMA/DAPI chromosome banding and FISH with 45S and 5S rDNA probes. The karyotypes showed a chromosome number of 2n = 2x = 16, with metacentric chromosomes, except for the eighth submeta- to acrocentric pair. Several types of heterochromatin were detected, which varied in size, number, distribution and base composition. The C-CMA+ bands and 45S rDNA were located predominantly in terminal regions. The C-CMA + /DAPI + bands appeared in interstitial and terminal regions, and the C-DAPI + bands were found in all chromosome regions. The 5S rDNA sites were observed on the long arm of pair 8 in all species except C. capsulare, where they were found in the paracentromeric region of the long arm of pair 4. The differences in band patterns among the species studied here, along with data from other nine species reported in the literature, suggest that the bands are dispersed in an equilocal and non-equilocal manner and that structural rearrangements can be responsible for internal karyotype diversification. However, it is important to point out that the structural changes involving repetitive segments did not culminate in substantial changes in the general karyotype structure concerning chromosome size and morphology

    An efficient application of goal programming to tackle multiobjective problems with recurring fitness landscapes

    Get PDF
    Many real-world applications require decision-makers to assess the quality of solutions while considering multiple conflicting objectives. Obtaining good approximation sets for highly constrained many objective problems is often a difficult task even for modern multiobjective algorithms. In some cases, multiple instances of the problem scenario present similarities in their fitness landscapes. That is, there are recurring features in the fitness landscapes when searching for solutions to different problem instances. We propose a methodology to exploit this characteristic by solving one instance of a given problem scenario using computationally expensive multiobjective algorithms to obtain a good approximation set and then using Goal Programming with efficient single-objective algorithms to solve other instances of the same problem scenario. We use three goal-based objective functions and show that on benchmark instances of the multiobjective vehicle routing problem with time windows, the methodology is able to produce good results in short computation time. The methodology allows to combine the effectiveness of state-of-the-art multiobjective algorithms with the efficiency of goal programming to find good compromise solutions in problem scenarios where instances have similar fitness landscapes

    Locus-Specific Ribosomal RNA Gene Silencing in Nucleolar Dominance

    Get PDF
    The silencing of one parental set of rRNA genes in a genetic hybrid is an epigenetic phenomenon known as nucleolar dominance. We showed previously that silencing is restricted to the nucleolus organizer regions (NORs), the loci where rRNA genes are tandemly arrayed, and does not spread to or from neighboring protein-coding genes. One hypothesis is that nucleolar dominance is the net result of hundreds of silencing events acting one rRNA gene at a time. A prediction of this hypothesis is that rRNA gene silencing should occur independent of chromosomal location. An alternative hypothesis is that the regulatory unit in nucleolar dominance is the NOR, rather than each individual rRNA gene, in which case NOR localization may be essential for rRNA gene silencing. To test these alternative hypotheses, we examined the fates of rRNA transgenes integrated at ectopic locations. The transgenes were accurately transcribed in all independent transgenic Arabidopsis thaliana lines tested, indicating that NOR localization is not required for rRNA gene expression. Upon crossing the transgenic A. thaliana lines as ovule parents with A. lyrata to form F1 hybrids, a new system for the study of nucleolar dominance, the endogenous rRNA genes located within the A. thaliana NORs are silenced. However, rRNA transgenes escaped silencing in multiple independent hybrids. Collectively, our data suggest that rRNA gene activation can occur in a gene-autonomous fashion, independent of chromosomal location, whereas rRNA gene silencing in nucleolar dominance is locus-dependent

    Combining genetical genomics and bulked segregant analysis-based differential expression: an approach to gene localization

    Get PDF
    Positional gene isolation in unsequenced species generally requires either a reference genome sequence or an inference of gene content based on conservation of synteny with a genomic model. In the large unsequenced genomes of the Triticeae cereals the latter, i.e. conservation of synteny with the rice and Brachypodium genomes, provides a powerful proxy for establishing local gene content and order. However, efficient exploitation of conservation of synteny requires ‘homology bridges’ between the model genome and the target region that contains a gene of interest. As effective homology bridges are generally the sequences of genetically mapped genes, increasing the density of these genes around a target locus is an important step in the process. We used bulked segregant analysis (BSA) of transcript abundance data to identify genes located in a specific region of the barley genome. The approach is valuable because only a relatively small proportion of barley genes are currently placed on a genetic map. We analyzed eQTL datasets from the reference Steptoe × Morex doubled haploid population and showed a strong association between differential gene expression and cis-regulation, with 83% of differentially expressed genes co-locating with their eQTL. We then performed BSA by assembling allele-specific pools based on the genotypes of individuals at the partial resistance QTL Rphq11. BSA identified a total of 411 genes as differentially expressed, including HvPHGPx, a gene previously identified as a promising candidate for Rphq11. The genetic location of 276 of these genes could be determined from both eQTL datasets and conservation of synteny, and 254 (92%) of these were located on the target chromosome. We conclude that the identification of differential expression by BSA constitutes a novel method to identify genes located in specific regions of interest. The datasets obtained from such studies provide a robust set of candidate genes for the analysis and serve as valuable resources for targeted marker development and comparative mapping with other grass species

    Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii

    Get PDF
    Background Photosynthetic organisms convert atmospheric carbon dioxide into numerous metabolites along the pathways to make new biomass. Aquatic photosynthetic organisms, which fix almost half of global inorganic carbon, have great potential: as a carbon dioxide fixation method, for the economical production of chemicals, or as a source for lipids and starch which can then be converted to biofuels. To harness this potential through metabolic engineering and to maximize production, a more thorough understanding of photosynthetic metabolism must first be achieved. A model algal species, C. reinhardtii, was chosen and the metabolic network reconstructed. Intracellular fluxes were then calculated using flux balance analysis (FBA). Results The metabolic network of primary metabolism for a green alga, C. reinhardtii, was reconstructed using genomic and biochemical information. The reconstructed network accounts for the intracellular localization of enzymes to three compartments and includes 484 metabolic reactions and 458 intracellular metabolites. Based on BLAST searches, one newly annotated enzyme (fructose-1,6-bisphosphatase) was added to the Chlamydomonas reinhardtii database. FBA was used to predict metabolic fluxes under three growth conditions, autotrophic, heterotrophic and mixotrophic growth. Biomass yields ranged from 28.9 g per mole C for autotrophic growth to 15 g per mole C for heterotrophic growth. Conclusion The flux balance analysis model of central and intermediary metabolism in C. reinhardtii is the first such model for algae and the first model to include three metabolically active compartments. In addition to providing estimates of intracellular fluxes, metabolic reconstruction and modelling efforts also provide a comprehensive method for annotation of genome databases. As a result of our reconstruction, one new enzyme was annotated in the database and several others were found to be missing; implying new pathways or non-conserved enzymes. The use of FBA to estimate intracellular fluxes also provides flux values that can be used as a starting point for rational engineering of C. reinhardtii. From these initial estimates, it is clear that aerobic heterotrophic growth on acetate has a low yield on carbon, while mixotrophically and autotrophically grown cells are significantly more carbon efficient
    corecore