58 research outputs found

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between data and simulation

    Separation of track- and shower-like energy deposits in ProtoDUNE-SP using a convolutional neural network

    Get PDF
    Liquid argon time projection chamber detector technology provides high spatial and calorimetric resolutions on the charged particles traversing liquid argon. As a result, the technology has been used in a number of recent neutrino experiments, and is the technology of choice for the Deep Underground Neutrino Experiment (DUNE). In order to perform high precision measurements of neutrinos in the detector, final state particles need to be effectively identified, and their energy accurately reconstructed. This article proposes an algorithm based on a convolutional neural network to perform the classification of energy deposits and reconstructed particles as track-like or arising from electromagnetic cascades. Results from testing the algorithm on experimental data from ProtoDUNE-SP, a prototype of the DUNE far detector, are presented. The network identifies track- and shower-like particles, as well as Michel electrons, with high efficiency. The performance of the algorithm is consistent between experimental data and simulation

    LIKELIHOOD BASED INFERENCE FOR SKEW-NORMAL INDEPENDENT LINEAR MIXED MODELS

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Linear mixed models with normally distributed response are routinely used in longitudinal data. However, the accuracy of the assumed normal distribution is crucial for valid inference of the parameters We present a new class of asymmetric linear mixed models that provides for an efficient estimation of the parameters in the analysis of longitudinal data We assume that, marginally. the random effects follow a multivariate skew-normal/independent distribution (Branco and Dey (2001)) and that the random errors follow a symmetric normal/independent distribution (Lange and Sinsheimer (1993)), providing an appealing robust alternative to the usual symmetric normal distribution in linear mixed models Specific distributions examined include the skew-normal, the skew-t, the skew-slash, and the skew-contaminated normal distribution We present all efficient EM-type algorithm algorithm for the computation of maximum likelihood estimation of parameters The technique for the prediction of future responses under this class of distributions is also investigated The methodology is illustrated through an applications to Framingham cholesterol data and a. simulation study.o TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE AGOSTO DE 2015.201303322Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FONDECYT (Chile) [1085241]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)FONDECYT (Chile) [1085241
    corecore