6 research outputs found

    An Analysis of FtsZ Assembly Using Small Angle X-ray Scattering and Electron Microscopy

    No full text
    Small angle X-ray scattering (SAXS) was used for the first time to study the self-assembly of the bacterial cell division protein, FtsZ, with three different additives: calcium chloride, monosodium glutamate and DEAF-dextran hydrochloride in solution. The SAXS data were analyzed assuming a model form factor and also by a model-independent analysis using the pair distance distribution function. Transmission electron microscopy (TEM) was used for direct observation of the FtsZ filaments. By sectioning and negative staining with glow discharged grids, very high bundling as well as low bundling polymers were observed under different assembly conditions. FtsZ polymers formed different structures in the presence of different additives and these additives were found to increase the bundling of FtsZ protofilaments by different mechanisms. The combined use of SAXS and TEM provided us a significant insight of the assembly of FtsZ and microstructures of the assembled FtsZ polymers

    Study of Layered Silicate Clays as Synergistic Nucleating Agent for Polypropylene

    No full text
    Effect of very small quantities of organically modified layered silicate clay on the nucleation of polypropylene (PP), as an additive at ppm levels dosage was investigated, in combination with two of the most commercially exploited organic nucleating agents, one of which is a cyclic aromatic phosphinate salt and the other is bis(3,4-dimethylbenzylidene) sorbitol, each representing a separate class of nucleating molecules by itself. Substitution of a considerable fraction of either of these organic nucleating agents with organically modified inorganic nanoclay was seen to result in a unique synergy between the two in nucleating PP. Polarized light microscopy studies of these synergistic formulations with organoclay to nucleating agent ratios of 1:1 and 1:3 totaling 0.2 weight percent in PP showed significant reduction in spherulite size from that of non-nucleated PP, and compared with the samples containing exclusive organic nucleating agent at similar loading. Differential scanning calorimetric studies provided evidence and insight into such synergistic behavior. Crystallization and supercooling temperatures for the synergistic formulations were comparable for those formulations containing only organic nucleating agents, indicating comparable nucleation efficiency, whereas organoclay alone, although showing some extent of nucleation, was clearly poorer in efficiency. Wide and small angle X-ray scattering studies further explained these observations. An increase in the gamma polytype fraction was seen in samples that contained both organoclay and nucleating agent, pointing to the role of organoclay as a gamma nucleator. Organoclay was found to be completely exfoliated in these synergistic formulations and was seen as well-dispersed, single platelets in the PP matrix. A hybrid network consisting of exfoliated organoclay platelets and organic nucleating agent molecules was proposed, which is more stable and stiffer than the network formed by nucleating agent alone. (C) 2010 . J Polym Sci Part B: Polym Phys 48: 1786-1794, 201

    SAXS Analysis of Polypropylene-Layered Silicate Nanocomposites: An Integrated Correlations Functions Approach Using an Exfoliation Factor

    No full text
    Use of correlation function and interface distribution function to obtain the morphological parameters from Small Angle X-ray Scattering data makes it as an important quantitative method to evaluate lamellar morphology. Analysis using correlation function assumes lamellar stack morphology with variation of electron density along one dimension where lateral width of lamellae is much larger than the long period normal to the lamellae and the electron density varies with a rectangular profile for alternating crystalline and amorphous layers. In this work, a modified Porod law approach is used for the deviation from ideal two phase model and the thickness of transition zone with variation in electron densities is calculated. Morphological parameters of various grades of organically modified Polypropylene clay nanocomposites, such as long period, linear crystallinity, lamellar thickness and amorphous thickness are estimated using a combination of correlation and interface distribution function. Presence of transition zones does not influence the values for amorphous layer thickness, crystalline layer thickness and long period. Variations in values of long period calculated from correlation and interface function suggest a distribution of lamellar sizes in the polymer and nanocomposites. A new model consisting of the integrated correlation function of polymer and organoclay was developed to quantify the extent of exfoliation of organoclay in the nanocomposites by introducing a parameter, the exfoliation factor, P. For a highly non-exfoliated system, the large number of clay tactoids is highly correlated and interacting, the correlation function of nanocomposites will be similar to that of nanoclay samples with low values of exfoliation factor. The correlation function of well exfoliated nanocomposites is similar to neat polymer, and such systems have high values of the exfoliation factor. Moreover, the exfoliation factor, which is easily determined by a scattering experiment, correlated well to the important engineering properties of the nanocomposites

    Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility

    Get PDF
    To access publisher's full text version of this article click on the hyperlink at the bottom of the pageTo further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls of European ancestry, we identified seven new T2D susceptibility loci. Furthermore, we observed considerable improvements in the fine-mapping resolution of common variant association signals at several T2D susceptibility loci. These observations highlight the benefits of trans-ethnic GWAS for the discovery and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry.Canadian Institutes of Health Research Medical Research Council UK G0601261 Mexico Convocatoria SSA/IMMS/ISSSTE-CONACYT 2012-2 clave 150352 IMSS R-2011-785-018 CONACYT Salud-2007-C01-71068 US National Institutes of Health DK062370 HG000376 DK085584 DK085545 DK073541 DK085501 Wellcome Trust WT098017 WT090532 WT090367 WT098381 WT081682 WT085475info:eu-repo/grantAgreement/EC/FP7/20141

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes

    Get PDF
    OBJECTIVE - Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired b-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS - We have conducted a meta-analysis of genome-wide association tests of ;2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS - Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10-8). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/ C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 3 10-4), improved b-cell function (P = 1.1 × 10-5), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10-6). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS - We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis
    corecore