1,496 research outputs found

    The performance of the EU-Rotate_N model in predicting the growth and nitrogen uptake of rotations of field vegetable crops in a Mediterranean environment

    Get PDF
    The EU-Rotate_N model was developed as a tool to estimate the growth and nitrogen (N) uptake of vegetable crop rotations across a wide range of European climatic conditions and to assess the economic and environmental consequences of alternative management strategies. The model has been evaluated under field conditions in Germany and Norway and under greenhouse conditions in China. The present work evaluated the model using Italian data to evaluate its performance in a warm and dry environment. Data were collected from four 2-year field rotations, which included lettuce (Lactuca sativa L.), fennel (Foeniculum vulgare Mill.), spinach (Spinacia oleracea L.), broccoli (Brassica oleracea L. var. italica Plenck) and white cabbage (B. oleracea convar. capitata var. alba L.); each rotation used three different rates of N fertilizer (average recommended N1, assumed farmer's practice N2=N1+0·3×N1 and a zero control N0). Although the model was not calibrated prior to running the simulations, results for above-ground dry matter biomass, crop residue biomass, crop N concentration and crop N uptake were promising. However, soil mineral N predictions to 0·6 m depth were poor. The main problem with the prediction of the test variables was the poor ability to capture N mineralization in some autumn periods and an inappropriate parameterization of fennel. In conclusion, the model performed well, giving results comparable with other bio-physical process simulation models, but for more complex crop rotations. The model has the potential for application in Mediterranean environments for field vegetable production

    Positionally dependent ^(15)N fraction factors in the UV photolysis of N_2O determined by high resolution FTIR spectroscopy

    Get PDF
    Positionally dependent fractionation factors for the photolysis of isotopomers of N_2O in natural abundance have been determined by high resolution FTIR spectroscopy at three photolysis wavelengths. Fractionation factors show clear 15N position and photolysis wavelength dependence and are in qualitative agreement with theoretical models but are twice as large. The fractionation factors increase with photolysis wavelength from 193 to 211 nm, with the fractionation factors at 207.6 nm for ^(14)N^(15)N^916)O, ^(15)N^(14)N^(16)O and ^(14)N^(14)N^(18)O equal to −66.5±5‰,−27.1±6‰ and −49±10‰, respectively

    Photosynthesis Is Widely Distributed among Proteobacteria as Demonstrated by the Phylogeny of PufLM Reaction Center Proteins

    Get PDF
    Two different photosystems for performing bacteriochlorophyll-mediated photosynthetic energy conversion are employed in different bacterial phyla. Those bacteria employing a photosystem II type of photosynthetic apparatus include the phototrophic purple bacteria (Proteobacteria), Gemmatimonas and Chloroflexus with their photosynthetic relatives. The proteins of the photosynthetic reaction center PufL and PufM are essential components and are common to all bacteria with a type-II photosynthetic apparatus, including the anaerobic as well as the aerobic phototrophic Proteobacteria. Therefore, PufL and PufM proteins and their genes are perfect tools to evaluate the phylogeny of the photosynthetic apparatus and to study the diversity of the bacteria employing this photosystem in nature. Almost complete pufLM gene sequences and the derived protein sequences from 152 type strains and 45 additional strains of phototrophic Proteobacteria employing photosystem II were compared. The results give interesting and comprehensive insights into the phylogeny of the photosynthetic apparatus and clearly define Chromatiales, Rhodobacterales, Sphingomonadales as major groups distinct from other Alphaproteobacteria, from Betaproteobacteria and from Caulobacterales (Brevundimonas subvibrioides). A special relationship exists between the PufLM sequences of those bacteria employing bacteriochlorophyll b instead of bacteriochlorophyll a. A clear phylogenetic association of aerobic phototrophic purple bacteria to anaerobic purple bacteria according to their PufLM sequences is demonstrated indicating multiple evolutionary lines from anaerobic to aerobic phototrophic purple bacteria. The impact of pufLM gene sequences for studies on the environmental diversity of phototrophic bacteria is discussed and the possibility of their identification on the species level in environmental samples is pointed out. © 2018 Imhoff, Rahn, Künzel and Neulinger

    Fluid Simulations of Three-Dimensional Reconnection that Capture the Lower-Hybrid Drift Instability

    Full text link
    Fluid models that approximate kinetic effects have received attention recently in the modelling of large scale plasmas such as planetary magnetospheres. In three-dimensional reconnection, both reconnection itself and current sheet instabilities need to be represented appropriately. We show that a heat flux closure based on pressure gradients enables a ten moment fluid model to capture key properties of the lower-hybrid drift instability (LHDI) within a reconnection simulation. Characteristics of the instability are examined with kinetic and fluid continuum models, and its role in the three-dimensional reconnection simulation is analysed. The saturation level of the electromagnetic LHDI is higher than expected which leads to strong kinking of the current sheet. Therefore, the magnitude of the initial perturbation has significant impact on the resulting turbulence.Comment: 20 pages, 9 figure

    Osmotic Adaptation and Compatible Solute Biosynthesis of Phototrophic Bacteria as Revealed from Genome Analyses

    Get PDF
    Osmotic adaptation and accumulation of compatible solutes is a key process for life at high osmotic pressure and elevated salt concentrations. Most important solutes that can protect cell structures and metabolic processes at high salt concentrations are glycine betaine and ectoine. The genome analysis of more than 130 phototrophic bacteria shows that biosynthesis of glycine betaine is common among marine and halophilic phototrophic Proteobacteria and their chemotrophic relatives, as well as in representatives of Pirellulaceae and Actinobacteria, but are also found in halophilic Cyanobacteria and Chloroherpeton thalassium. This ability correlates well with the successful toleration of extreme salt concentrations. Freshwater bacteria in general lack the possibilities to synthesize and often also to take up these compounds. The biosynthesis of ectoine is found in the phylogenetic lines of phototrophic Alpha- and Gammaproteobacteria, most prominent in the Halorhodospira species and a number of Rhodobacteraceae. It is also common among Streptomycetes and Bacilli. The phylogeny of glycine-sarcosine methyltransferase (GMT) and diaminobutyrate-pyruvate aminotransferase (EctB) sequences correlate well with otherwise established phylogenetic groups. Most significantly, GMT sequences of cyanobacteria form two major phylogenetic branches and the branch of Halorhodospira species is distinct from all other Ectothiorhodospiraceae. A variety of transport systems for osmolytes are present in the studied bacteri

    EU-Rotate_N – a decision support system – to predict environmental and economic consequences of the management of nitrogen fertiliser in crop rotations

    Get PDF
    A model has been developed which assesses the economic and environmental performance of crop rotations, in both conventional and organic cropping, for over 70 arable and horticultural crops, and a wide range of growing conditions in Europe. The model, though originally based on the N_ABLE model, has been completely rewritten and contains new routines to simulate root development, the mineralisation and release of nitrogen (N) from soil organic matter and crop residues, and water dynamics in soil. New routines have been added to estimate the effects of sub-optimal rates of N and spacing on the marketable outputs and gross margins. The model provides a mechanism for generating scenarios to represent a range of differing crop and fertiliser management strategies which can be used to evaluate their effects on yield, gross margin and losses of nitrogen through leaching. Such testing has revealed that nitrogen management can be improved and that there is potential to increase gross margins whilst reducing nitrogen losses

    Dust Storms Come to Central and Southwestern China, Too: Implications from a Major Dust Event in Chongqing

    Get PDF
    Dust storms from major Asian sources are usually carried by northwesterly or westerly winds over Northern and Southeastern China to the Pacific Ocean. These pathways leave Central and Southwestern China nearly free of incursions. But a strong dust event on 5–6 May 2005 was captured in a 15-month series of weekly filter samples of PM2.5 at three sites in Chongqing. It illustrated that desert dust can be transported to this region, and sometimes strongly. Annual PM2.5 and dust were similar at the three sites, but higher than in simultaneous samples in Beijing. High correlations of dust concentrations were found between the cities during spring, indicating that Asian dust affects a broader swath of China than is often realized. During the event, the concentrations of mineral dust were high at all sites (20–30 μg m−3; 15%–20% of PM2.5 in Chongqing, and 15 μg m−3; 20%–30% of PM2.5 in Beijing), and were part of a broader spring maximum. The proportions of crustal elements and pollution-derived components such as Pb, SO42−, and organic carbon indicated that the sources for this dust differed from Beijing. The dust was considerably enriched in Ca and Mg, characteristic of western deserts, whereas Beijing\u27s dust had the lower Ca and Mg of eastern deserts. This observation agrees with synoptic patterns and back-trajectories. Driven by a cold air outbreak from the northwest, dust from the western Gobi Desert was transported at lower altitudes (level), while dust from the Takla Makan Desert was transported to Chongqing at higher altitudes. Desert dust can also be important to wide areas of China during the cold season, since almost all the weekly dust peaks in the two cities coincided with extensive dust emissions in source regions. These findings collectively suggest that the amount Asian-dust in China has been underestimated both spatially and temporally, and that transported alkaline dust can even be mitigating the effects of acidic deposition in Southern China

    Phylogeny of Anoxygenic Photosynthesis Based on Sequences of Photosynthetic Reaction Center Proteins and a Key Enzyme in Bacteriochlorophyll Biosynthesis, the Chlorophyllide Reductase

    Get PDF
    Photosynthesis is a key process for the establishment and maintenance of life on earth, and it is manifested in several major lineages of the prokaryote tree of life. The evolution of photosynthesis in anoxygenic photosynthetic bacteria is of major interest as these have the most ancient roots of photosynthetic systems. The phylogenetic relations between anoxygenic phototrophic bacteria were compared on the basis of sequences of key proteins of the type-II photosynthetic reaction center, including PufLM and PufH (PuhA), and a key enzyme of bacteriochlorophyll biosynthesis, the light-independent chlorophyllide reductase BchXYZ. The latter was common to all anoxygenic phototrophic bacteria, including those with a type-I and those with a type-II photosynthetic reaction center. The phylogenetic considerations included cultured phototrophic bacteria from several phyla, including Proteobacteria (138 species), Chloroflexi (five species), Chlorobi (six species), as well as Heliobacterium modesticaldum (Firmicutes), Chloracidobacterium acidophilum (Acidobacteria), and Gemmatimonas phototrophica (Gemmatimonadetes). Whenever available, type strains were studied. Phylogenetic relationships based on a photosynthesis tree (PS tree, including sequences of PufHLM-BchXYZ) were compared with those of 16S rRNA gene sequences (RNS tree). Despite some significant differences, large parts were congruent between the 16S rRNA phylogeny and photosynthesis proteins. The phylogenetic relations demonstrated that bacteriochlorophyll biosynthesis had evolved in ancestors of phototrophic green bacteria much earlier as compared to phototrophic purple bacteria and that multiple events independently formed different lineages of aerobic phototrophic purple bacteria, many of which have very ancient roots. The Rhodobacterales clearly represented the youngest group, which was separated from other Proteobacteria by a large evolutionary ga
    corecore