50 research outputs found

    Thalamic activity and biochemical changes in individuals with neuropathic pain following spinal cord injury

    Get PDF
    There is increasing evidence relating thalamic changes to the generation and/or maintenance of neuropathic pain. We have recently reported that neuropathic orofacial pain is associated with altered thalamic anatomy, biochemistry, and activity, which may result in disturbed thalamocortical oscillatory circuits. Despite this evidence, it is possible that these thalamic changes are not responsible for the presence of pain per se, but result as a consequence of the injury. To clarify this subject, we compared brain activity and biochemistry in 12 people with below-level neuropathic pain after complete thoracic spinal cord injury with 11 people with similar injuries and no neuropathic pain and 21 age- and gender-matched healthy control subjects. Quantitative arterial spinal labelling was used to measure thalamic activity, and magnetic resonance spectroscopy was used to determine changes in neuronal variability quantifying N-acetylaspartate and alterations in inhibitory function quantifying gamma amino butyric acid. This study revealed that the presence of neuropathic pain is associated with significant changes in thalamic biochemistry and neuronal activity. More specifically, the presence of neuropathic pain after spinal cord injury is associated with significant reductions in thalamic N-acetylaspartate, gamma amino butyric acid content, and blood flow in the region of the thalamic reticular nucleus. Spinal cord injury on its own did not account for these changes. These findings support the hypothesis that neuropathic pain is associated with altered thalamic structure and function, which may disturb central processing and play a key role in the experience of neuropathic pain.NHMR

    Frequency drift in MR spectroscopy at 3T

    Get PDF
    Purpose: Heating of gradient coils and passive shim components is a common cause of instability in the B-0 field, especially when gradient intensive sequences are used. The aim of the study was to set a benchmark for typical drift encountered during MR spectroscopy (MRS) to assess the need for real-time field-frequency locking on MRI scanners by comparing field drift data from a large number of sites.Method: A standardized protocol was developed for 80 participating sites using 99 3T MR scanners from 3 major vendors. Phantom water signals were acquired before and after an EPI sequence. The protocol consisted of: minimal preparatory imaging; a short pre-fMRI PRESS; a ten-minute fMRI acquisition; and a long post-fMRI PRESS acquisition. Both pre- and post-fMRI PRESS were non-water suppressed. Real-time frequency stabilization/adjustment was switched off when appropriate. Sixty scanners repeated the protocol for a second dataset. In addition, a three-hour post-fMRI MRS acquisition was performed at one site to observe change of gradient temperature and drift rate. Spectral analysis was performed using MATLAB. Frequency drift in pre-fMRI PRESS data were compared with the first 5:20 minutes and the full 30:00 minutes of data after fMRI. Median (interquartile range) drifts were measured and showed in violin plot. Paired t-tests were performed to compare frequency drift pre- and post-fMRI. A simulated in vivo spectrum was generated using FID-A to visualize the effect of the observed frequency drifts. The simulated spectrum was convolved with the frequency trace for the most extreme cases. Impacts of frequency drifts on NAA and GABA were also simulated as a function of linear drift. Data from the repeated protocol were compared with the corresponding first dataset using Pearson's and intraclass correlation coefficients (ICC).Results: Of the data collected from 99 scanners, 4 were excluded due to various reasons. Thus, data from 95 scanners were ultimately analyzed. For the first 5:20 min (64 transients), median (interquartile range) drift was 0.44 (1.29) Hz before fMRI and 0.83 (1.29) Hz after. This increased to 3.15 (4.02) Hz for the full 30 min (360 transients) run. Average drift rates were 0.29 Hz/min before fMRI and 0.43 Hz/min after. Paired t-tests indicated that drift increased after fMRI, as expected (p &lt; 0.05). Simulated spectra convolved with the frequency drift showed that the intensity of the NAA singlet was reduced by up to 26%, 44 % and 18% for GE, Philips and Siemens scanners after fMRI, respectively. ICCs indicated good agreement between datasets acquired on separate days. The single site long acquisition showed drift rate was reduced to 0.03 Hz/min approximately three hours after fMRI.Discussion: This study analyzed frequency drift data from 95 3T MRI scanners. Median levels of drift were relatively low (5-min average under 1 Hz), but the most extreme cases suffered from higher levels of drift. The extent of drift varied across scanners which both linear and nonlinear drifts were observed.</p

    Individual Differences in Subconscious Motor Control Predicted by GABA Concentration in SMA

    No full text
    Subliminal visual stimuli affect motor planning [1], but the size of such effects differs greatly between individuals [2, 3]. Here, we investigated whether such variation may be related to neurochemical differences between people. Cortical responsiveness is expected to be lower under the influence of more of the main inhibitory neurotransmitter, GABA [4]. Thus, we hypothesized that, if an individual has more GABA in the supplementary motor area (SMA)—a region previously associated with automatic motor control [5]—this would result in smaller subliminal effects. We measured the reversed masked prime—or negative compat- ibility—effect, and found that it correlated strongly with GABA concentration, measured with magnetic resonance spectroscopy. This occurred specifically in the SMA region, and not in other regions from which spectroscopy measure- ments were taken. We replicated these results in an inde- pendent cohort: more GABA in the SMA region is reliably associated with smaller effect size. These findings suggest that, across individuals, the responsiveness of subcon- scious motor mechanisms is related to GABA concentration in the SMA

    Cerebellar GABA Levels and Cognitive Interference in Parkinson's disease and Healthy Comparators

    No full text
    The neuroanatomical and molecular substrates for cognitive impairment in Parkinson Disease (PD) are far from clear. Evidence suggests a non-dopaminergic basis, and a crucial role for cerebellum in cognitive control in PD. We investigated whether a PD cognitive marker (response inhibition) was differently controlled by g-amino butyric acid (GABA) and/or by glutamate-glutamine (Glx) levels in the cerebellum of idiopathic PD patients, and healthy comparators (HC). Magnetic resonance spectroscopy of GABA/Glx (MEGA-PRESS acquisition sequence) was performed at 3 Tesla, and response inhibition assessed by the Stroop Word-Color Test (SWCT) and the Wisconsin Card Sorting Test (WCST). Linear correlations between cerebellar GABA/Glx levels, SWCT time/error interference effects and WCST perseverative errors were performed to test differences between correlation coefficients in PD and HC. Results showed that higher levels of mean cerebellar GABA were associated to SWCT increased time and error interference effects in PD, and the contrary in HC. Such effect dissociated by hemisphere, while correlation coefficients differences were significant in both right and left cerebellum. We conclude that MRS measured levels of cerebellar GABA are related in PD patients with decreased efficiency in filtering task-irrelevant information. This is crucial for developing pharmacological treatments for PD to potentially preserve cognitive functioning
    corecore