83 research outputs found

    Force variability during isometric wrist flexion in highly skilled and sedentary individuals

    Get PDF
    The association of expertness in specific motor activities with a higher ability to sustain a constant application of force, regardless of muscle length, has been hypothesized. Ten highly skilled (HS group) young tennis and handball athletes and 10 sedentary (S group) individuals performed maximal and submaximal (5, 10, 20, 50, and 75% of the MVC) isometric wrist flexions on an isokinetic dynamometer (Kin-Com, Chattanooga). The wrist joint was fixed at five different angles (230, 210, 180, 150, and 1300). For each position the percentages of the maximal isometric force were calculated and participants were asked to maintain the respective force level for 5 s. Electromyographic (EMG) activation of the Flexor Carpi Ulnaris and Extensor Digitorum muscles was recorded using bipolar surface electrodes. No significant differences were observed in maximal isometric strength between HS and S groups. Participants of HS group showed significantly (P < 0.05) smaller force coefficient of variability (CV) and SD values at all submaximal levels of MVC at all wrist angles. The CV and SD values remained unaltered regardless of wrist angle. No difference in normalized agonist and antagonist EMG activity was observed between the two groups. It is concluded that long-term practice could be associated with decreased isometric force variability independently from muscular length and coactivation of the antagonist muscles

    SHMT1 1420 and MTHFR 677 variants are associated with rectal but not colon cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Association between rectal or colon cancer risk and serine hydroxymethyltransferase 1 (<it>SHMT1</it>) C1420T or methylenetetrahydrofolate reductase (<it>MTHFR</it>) C677T polymorphisms was assessed. The serum total homocysteine (HCY), marker of folate metabolism was also investigated.</p> <p>Methods</p> <p>The <it>SHMT1 </it>and <it>MTHFR </it>genotypes were determined by real-time PCR and PCR-RFLP, respectively in 476 patients with rectal, 479 patients with colon cancer and in 461 and 478, respective controls matched for age and sex. Homocysteine levels were determined by HPLC kit. The association between polymorphisms and cancer risk was evaluated by logistic regression analysis adjusted for age, sex and body mass index. The population stratification bias was also estimated.</p> <p>Results</p> <p>There was no association of genotypes or diplotypes with colon cancer. The rectal cancer risk was significantly lower for <it>SHMT1 </it>TT (OR = 0.57, 95% confidence interval (CI) 0.36-0.89) and higher for <it>MTHFR </it>CT genotypes (OR = 1.4, 95%CI 1.06-1.84). A gene-dosage effect was observed for <it>SHMT1 </it>with progressively decreasing risk with increasing number of T allele (p = 0.014). The stratified analysis according to age and sex revealed that the association is mainly present in the younger (< 60 years) or male subgroup. As expected from genotype analysis, the <it>SHMT1 </it>T allele/<it>MTHFR </it>CC diplotype was associated with reduced rectal cancer risk (OR 0.56, 95%CI 0.42-0.77 vs all other diplotypes together). The above results are unlikely to suffer from population stratification bias. In controls HCY was influenced by <it>SHMT1 </it>polymorphism, while in patients it was affected only by Dukes' stage. In patients with Dukes' stage C or D HCY can be considered as a tumor marker only in case of <it>SHMT1 </it>1420CC genotypes.</p> <p>Conclusions</p> <p>A protective effect of <it>SHMT1 </it>1420T allele or <it>SHMT1 </it>1420 T allele/<it>MTHFR </it>677 CC diplotype against rectal but not colon cancer risk was demonstrated. The presence of <it>SHMT1 </it>1420 T allele significantly increases the HCY levels in controls but not in patients. Homocysteine could be considered as a tumor marker in <it>SHMT1 </it>1420 wild-type (CC) CRC patients in Dukes' stage C and D. Further studies need to clarify why <it>SHMT1 </it>and <it>MTHFR </it>polymorphisms are associated only with rectal and not colon cancer risk.</p

    Consistency and discrepancy in the atmospheric response to Arctic sea-ice loss across climate models

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Nature via the DOI in this recordThe decline of Arctic sea ice is an integral part of anthropogenic climate change. Sea-ice loss is already having a significant impact on Arctic communities and ecosystems. Its role as a cause of climate changes outside of the Arctic has also attracted much scientific interest. Evidence is mounting that Arctic sea-ice loss can affect weather and climate throughout the Northern Hemisphere. The remote impacts of Arctic sea-ice loss can only be properly represented using models that simulate interactions among the ocean, sea ice, land and atmosphere. A synthesis of six such experiments with different models shows consistent hemispheric-wide atmospheric warming, strongest in the mid-to-high-latitude lower troposphere; an intensification of the wintertime Aleutian Low and, in most cases, the Siberian High; a weakening of the Icelandic Low; and a reduction in strength and southward shift of the mid-latitude westerly winds in winter. The atmospheric circulation response seems to be sensitive to the magnitude and geographic pattern of sea-ice loss and, in some cases, to the background climate state. However, it is unclear whether current-generation climate models respond too weakly to sea-ice change. We advocate for coordinated experiments that use different models and observational constraints to quantify the climate response to Arctic sea-ice loss.J.A.S. and R.B. were funded by the Natural Environment Research Council (NE/P006760/1). C.D. acknowledges the National Science Foundation (NSF), which sponsors the National Center for Atmospheric Research. D.M.S. was supported by the Met Office Hadley Centre Climate Programme (GA01101) and the APPLICATE project, which is funded by the European Union’s Horizon 2020 programme. X.Z. was supported by the NSF (ARC#1023592). P.J.K. and K.E.M. were supported by the Canadian Sea Ice and Snow Evolution Network, which is funded by the Natural Science and Engineering Research Council of Canada. T.O. was funded by Environment and Climate Change Canada (GCXE17S038). L.S. was supported by the National Oceanic and Atmospheric Administration’s Climate Program Office

    The GimA Locus of Extraintestinal Pathogenic E. coli: Does Reductive Evolution Correlate with Habitat and Pathotype?

    Get PDF
    IbeA (invasion of brain endothelium), which is located on a genomic island termed GimA, is involved in the pathogenesis of several extraintestinal pathogenic E. coli (ExPEC) pathotypes, including newborn meningitic E. coli (NMEC) and avian pathogenic E. coli (APEC). To unravel the phylogeny of GimA and to investigate its island character, the putative insertion locus of GimA was determined via Long Range PCR and DNA-DNA hybridization in 410 E. coli isolates, including APEC, NMEC, uropathogenic (UPEC), septicemia-associated E. coli (SEPEC), and human and animal fecal isolates as well as in 72 strains of the E. coli reference (ECOR) collection. In addition to a complete GimA (∼20.3 kb) and a locus lacking GimA we found a third pattern containing a 342 bp remnant of GimA in this strain collection. The presence of GimA was almost exclusively detected in strains belonging to phylogenetic group B2. In addition, the complete GimA was significantly more frequent in APEC and NMEC strains while the GimA remnant showed a higher association with UPEC strains. A detailed analysis of the ibeA sequences revealed the phylogeny of this gene to be consistent with that obtained by Multi Locus Sequence Typing of the strains. Although common criteria for genomic islands are partially fulfilled, GimA rather seems to be an ancestral part of phylogenetic group B2, and it would therefore be more appropriate to term this genomic region GimA locus instead of genomic island. The existence of two other patterns reflects a genomic rearrangement in a reductive evolution-like manner

    Naupliar and Metanaupliar development of Thysanoessa raschii (Malacostraca, Euphausiacea) from Godthåbsfjord, Greenland, with a reinstatement of the ancestral status of the free-living Nauplius in Malacostracan evolution

    Get PDF
    The presence of a characteristic crustacean larval type, the nauplius, in many crustacean taxa has often been considered one of the few uniting characters of the Crustacea. Within Malacostraca, the largest crustacean group, nauplii are only present in two taxa, Euphauciacea (krill) and Decapoda Dendrobranchiata. The presence of nauplii in these two taxa has traditionally been considered a retained primitive characteristic, but free-living nauplii have also been suggested to have reappeared a couple of times from direct developing ancestors during malacostracan evolution. Based on a re-study of Thysanoessa raschii (Euphausiacea) using preserved material collected in Greenland, we readdress this important controversy in crustacean evolution, and, in the process, redescribe the naupliar and metanaupliar development of T. raschii. In contrast to most previous studies of euphausiid development, we recognize three (not two) naupliar (= ortho-naupliar) stages (N1-N3) followed by a metanauplius (MN). While there are many morphological changes between nauplius 1 and 2 (e.g., appearance of long caudal setae), the changes between nauplius 2 and 3 are few but distinct. They involve the size of some caudal spines (largest in N3) and the setation of the antennal endopod (an extra seta in N3). A wider comparison between free-living nauplii of both Malacostraca and non-Malacostraca revealed similarities between nauplii in many taxa both at the general level (e.g., the gradual development and number of appendages) and at the more detailed level (e.g., unclear segmentation of naupliar appendages, caudal setation, presence of frontal filaments). We recognize these similarities as homologies and therefore suggest that free-living nauplii were part of the ancestral malacostracan type of development. The derived morphology (e.g., lack of feeding structures, no fully formed gut, high content of yolk) of both euphausiid and dendrobranchiate nauplii is evidently related to their non-feeding (lecithotrophic) status

    Astrocytes: biology and pathology

    Get PDF
    Astrocytes are specialized glial cells that outnumber neurons by over fivefold. They contiguously tile the entire central nervous system (CNS) and exert many essential complex functions in the healthy CNS. Astrocytes respond to all forms of CNS insults through a process referred to as reactive astrogliosis, which has become a pathological hallmark of CNS structural lesions. Substantial progress has been made recently in determining functions and mechanisms of reactive astrogliosis and in identifying roles of astrocytes in CNS disorders and pathologies. A vast molecular arsenal at the disposal of reactive astrocytes is being defined. Transgenic mouse models are dissecting specific aspects of reactive astrocytosis and glial scar formation in vivo. Astrocyte involvement in specific clinicopathological entities is being defined. It is now clear that reactive astrogliosis is not a simple all-or-none phenomenon but is a finely gradated continuum of changes that occur in context-dependent manners regulated by specific signaling events. These changes range from reversible alterations in gene expression and cell hypertrophy with preservation of cellular domains and tissue structure, to long-lasting scar formation with rearrangement of tissue structure. Increasing evidence points towards the potential of reactive astrogliosis to play either primary or contributing roles in CNS disorders via loss of normal astrocyte functions or gain of abnormal effects. This article reviews (1) astrocyte functions in healthy CNS, (2) mechanisms and functions of reactive astrogliosis and glial scar formation, and (3) ways in which reactive astrocytes may cause or contribute to specific CNS disorders and lesions

    Age-dependent motor unit remodelling in human limb muscles.

    Get PDF
    Voluntary control of skeletal muscle enables humans to interact with and manipulate the environment. Lower muscle mass, weakness and poor coordination are common complaints in older age and reduce physical capabilities. Attention has focused on ways of maintaining muscle size and strength by exercise, diet or hormone replacement. Without appropriate neural innervation, however, muscle cannot function. Emerging evidence points to a neural basis of muscle loss. Motor unit number estimates indicate that by age around 71 years, healthy older people have around 40 % fewer motor units. The surviving low- and moderate-threshold motor units recruited for moderate intensity contractions are enlarged by around 50 % and show increased fibre density, presumably due to collateral reinnervation of denervated fibres. Motor unit potentials show increased complexity and the stability of neuromuscular junction transmissions is decreased. The available evidence is limited by a lack of longitudinal studies, relatively small sample sizes, a tendency to examine the small peripheral muscles and relatively few investigations into the consequences of motor unit remodelling for muscle size and control of movements in older age. Loss of motor neurons and remodelling of surviving motor units constitutes the major change in ageing muscles and probably contributes to muscle loss and functional impairments. The deterioration and remodelling of motor units likely imposes constraints on the way in which the central nervous system controls movements

    Genome Sequence of Porcine Escherichia coli Strain IMT8073, an Atypical Enteropathogenic E. coli Strain Isolated from a Piglet with Diarrhea.

    Get PDF
    Escherichia coli is a highly diverse bacterial species, with atypical enteropathogenic E. coli (aEPEC) causing intestinal disease in both human and animal hosts. Here, we report the first complete genome sequence of an aEPEC strain of sequence type ST794 and serotype Ont:H7, isolated from a diseased piglet
    corecore