142 research outputs found

    Folate catabolites in spot urine as non-invasive biomarkers of folate status during habitual intake and folic acid supplementation.

    Get PDF
    Folate status, as reflected by red blood cell (RCF) and plasma folates (PF), is related to health and disease risk. Folate degradation products para-aminobenzoylglutamate (pABG) and para-acetamidobenzoylglutamate (apABG) in 24 hour urine have recently been shown to correlate with blood folate. Since blood sampling and collection of 24 hour urine are cumbersome, we investigated whether the determination of urinary folate catabolites in fasted spot urine is a suitable non-invasive biomarker for folate status in subjects before and during folic acid supplementation. Immediate effects of oral folic acid bolus intake on urinary folate catabolites were assessed in a short-term pre-study. In the main study we included 53 healthy men. Of these, 29 were selected for a 12 week folic acid supplementation (400 µg). Blood, 24 hour and spot urine were collected at baseline and after 6 and 12 weeks and PF, RCF, urinary apABG and pABG were determined. Intake of a 400 µg folic acid bolus resulted in immediate increase of urinary catabolites. In the main study pABG and apABG concentrations in spot urine correlated well with their excretion in 24 hour urine. In healthy men consuming habitual diet, pABG showed closer correlation with PF (rs = 0.676) and RCF (rs = 0.649) than apABG (rs = 0.264, ns and 0.543). Supplementation led to significantly increased folate in plasma and red cells as well as elevated urinary folate catabolites, while only pABG correlated significantly with PF (rs = 0.574) after 12 weeks. Quantification of folate catabolites in fasted spot urine seems suitable as a non-invasive alternative to blood or 24 hour urine analysis for evaluation of folate status in populations consuming habitual diet. In non-steady-state conditions (folic acid supplementation) correlations between folate marker (RCF, PF, urinary catabolites) decrease due to differing kinetics

    Histone deacetylases as new therapy targets for platinum-resistant epithelial ovarian cancer

    Get PDF
    Introduction: In developed countries, ovarian cancer is the fourth most common cancer in women. Due to the nonspecific symptomatology associated with the disease many patients with ovarian cancer are diagnosed late, which leads to significantly poorer prognosis. Apart from surgery and radiotherapy, a substantial number of ovarian cancer patients will undergo chemotherapy and platinum based agents are the mainstream first-line therapy for this disease. Despite the initial efficacy of these therapies, many women relapse; therefore, strategies for second-line therapies are required. Regulation of DNA transcription is crucial for tumour progression, metastasis and chemoresistance which offers potential for novel drug targets. Methods: We have reviewed the existing literature on the role of histone deacetylases, nuclear enzymes regulating gene transcription. Results and conclusion: Analysis of available data suggests that a signifant proportion of drug resistance stems from abberant gene expression, therefore HDAC inhibitors are amongst the most promising therapeutic targets for cancer treatment. Together with genetic testing, they may have a potential to serve as base for patient-adapted therapies

    Pesticides in house dust from urban and farmworker households in California: an observational measurement study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies report that residential use of pesticides in low-income homes is common because of poor housing conditions and pest infestations; however, exposure data on contemporary-use pesticides in low-income households is limited. We conducted a study in low-income homes from urban and agricultural communities to: characterize and compare house dust levels of agricultural and residential-use pesticides; evaluate the correlation of pesticide concentrations in samples collected several days apart; examine whether concentrations of pesticides phased-out for residential uses, but still used in agriculture (i.e., chlorpyrifos and diazinon) have declined in homes in the agricultural community; and estimate resident children's pesticide exposures via inadvertent dust ingestion.</p> <p>Methods</p> <p>In 2006, we collected up to two dust samples 5-8 days apart from each of 13 urban homes in Oakland, California and 15 farmworker homes in Salinas, California, an agricultural community (54 samples total). We measured 22 insecticides including organophosphates (chlorpyrifos, diazinon, diazinon-oxon, malathion, methidathion, methyl parathion, phorate, and tetrachlorvinphos) and pyrethroids (allethrin-two isomers, bifenthrin, cypermethrin-four isomers, deltamethrin, esfenvalerate, imiprothrin, permethrin-two isomers, prallethrin, and sumithrin), one phthalate herbicide (chlorthal-dimethyl), one dicarboximide fungicide (iprodione), and one pesticide synergist (piperonyl butoxide).</p> <p>Results</p> <p>More than half of the households reported applying pesticides indoors. Analytes frequently detected in both locations included chlorpyrifos, diazinon, permethrin, allethrin, cypermethrin, and piperonyl butoxide; no differences in concentrations or loadings were observed between locations for these analytes. Chlorthal-dimethyl was detected solely in farmworker homes, suggesting contamination due to regional agricultural use. Concentrations in samples collected 5-8 days apart in the same home were strongly correlated for the majority of the frequently detected analytes (Spearman ρ = 0.70-1.00, p < 0.01). Additionally, diazinon and chlorpyrifos concentrations in Salinas farmworker homes were 40-80% lower than concentrations reported in samples from Salinas farmworker homes studied between 2000-2002, suggesting a temporal reduction after their residential phase-out. Finally, estimated non-dietary pesticide intake for resident children did not exceed current U.S. Environmental Protection Agency's (U.S. EPA) recommended chronic reference doses (RfDs).</p> <p>Conclusion</p> <p>Low-income children are potentially exposed to a mixture of pesticides as a result of poorer housing quality. Historical or current pesticide use indoors is likely to contribute to ongoing exposures. Agricultural pesticide use may also contribute to additional exposures to some pesticides in rural areas. Although children's non-dietary intake did not exceed U.S. EPA RfDs for select pesticides, this does not ensure that children are free of any health risks as RfDs have their own limitations, and the children may be exposed indoors via other pathways. The frequent pesticide use reported and high detection of several home-use pesticides in house dust suggests that families would benefit from integrated pest management strategies to control pests and minimize current and future exposures.</p

    Does the Potential for Chaos Constrain the Embryonic Cell-Cycle Oscillator?

    Get PDF
    Although many of the core components of the embryonic cell-cycle network have been elucidated, the question of how embryos achieve robust, synchronous cellular divisions post-fertilization remains unexplored. What are the different schemes that could be implemented by the embryo to achieve synchronization? By extending a cell-cycle model previously developed for embryos of the frog Xenopus laevis to include the spatial dimensions of the embryo, we establish a novel role for the rapid, fertilization-initiated calcium wave that triggers cell-cycle oscillations. Specifically, in our simulations a fast calcium wave results in synchronized cell cycles, while a slow wave results in full-blown spatio-temporal chaos. We show that such chaos would ultimately lead to an unpredictable patchwork of cell divisions across the embryo. Given this potential for chaos, our results indicate a novel design principle whereby the fast calcium-wave trigger following embryo fertilization synchronizes cell divisions

    Fluorophore Labeled Kinase Detects Ligands That Bind within the MAPK Insert of p38α Kinase

    Get PDF
    The vast majority of small molecules known to modulate kinase activity, target the highly conserved ATP-pocket. Consequently, such ligands are often less specific and in case of inhibitors, this leads to the inhibition of multiple kinases. Thus, selective modulation of kinase function remains a major hurdle. One of the next great challenges in kinase research is the identification of ligands which bind to less conserved sites and target the non-catalytic functions of protein kinases. However, approaches that allow for the unambiguous identification of molecules that bind to these less conserved sites are few in number. We have previously reported the use of fluorescent labels in kinases (FLiK) to develop direct kinase binding assays that exclusively detect ligands which stabilize inactive (DFG-out) kinase conformations. Here, we present the successful application of the FLiK approach to develop a high-throughput binding assay capable of directly monitoring ligand binding to a remote site within the MAPK insert of p38α mitogen-activated protein kinase (MAPK). Guided by the crystal structure of an initially identified hit molecule in complex with p38α, we developed a tight binding ligand which may serve as an ideal starting point for further investigations of the biological function of the MAPK insert in regulating the p38α signaling pathway

    Ferric carboxymaltose with or without erythropoietin for the prevention of red-cell transfusions in the perioperative period of osteoporotic hip fractures: a randomized contolled trial. The PAHFRAC-01 project

    Get PDF
    Background: Around one third to one half of patients with hip fractures require red-cell pack transfusion. The increasing incidence of hip fracture has also raised the need for this scarce resource. Additionally, red-cell pack transfusions are not without complications which may involve excessive morbidity and mortality. This makes it necessary to develop blood-saving strategies. Our objective was to assess safety, efficacy, and cost-effictveness of combined treatment of i.v. ferric carboxymaltose and erythropoietin (EPOFE arm) versus i.v. ferric carboxymaltose (FE arm) versus a placebo (PLACEBO arm) in reducing the percentage of patients who receive blood transfusions, as well as mortality in the perioperative period of hip fracture intervention. Methods/Design: Multicentric, phase III, randomized, controlled, double blinded, parallel groups clinical trial. Patients > 65 years admitted to hospital with a hip fracture will be eligible to participate. Patients will be treated with either a single dosage of i.v. ferric carboxymaltose of 1 g and subcutaneous erythropoietin (40.000 IU), or i.v. ferric carboxymaltose and subcutaneous placebo, or i.v. placebo and subcutaneous placebo. Follow-up will be performed until 60 days after discharge, assessing transfusion needs, morbidity, mortality, safety, costs, and health-related quality of life. Intention to treat, as well as per protocol, and incremental cost-effectiveness analysis will be performed. The number of recruited patients per arm is set at 102, a total of 306 patients. Discussion: We think that this trial will contribute to the knowledge about the safety and efficacy of ferric carboxymaltose with/without erythropoietin in preventing red-cell pack transfusions in patients with hip fracture. ClinicalTrials.gov identifier: NCT01154491

    Preexisting Japanese Encephalitis Virus Neutralizing Antibodies and Increased Symptomatic Dengue Illness in a School-Based Cohort in Thailand

    Get PDF
    Dengue viruses (DENVs) and Japanese encephalitis virus (JEV) have significant cross-reactivity in serological assays, but the possible clinical implications of this remain poorly understood. Interactions between these flaviviruses are potentially important for public health because wild-type JEV continues to co-circulate with DENV in Southeast Asia, the area with the highest burden of DENV illness, and JEV vaccination coverage in this region is high. In this study, we examined how preexisting JEV neutralizing antibodies (NAbs) influenced the clinical severity of subsequent DENV infection using data from a prospective school-based cohort study in Thailand that captured a wide range of clinical severities, including asymptomatic, non-hospitalized, and hospitalized DENV infections. We found that the prior existence of JEV NAbs was associated with an increased occurrence of symptomatic versus asymptomatic DENV infection. This association was most notable in DENV-naives, in whom the presence of JEV NAbs was also associated with an illness of longer duration. These findings suggest that the issue of heterologous flavivirus immunity and DENV infection merits renewed attention and interest and that DENV vaccine developers might incorporate detailed assessments of preexisting immunity to non-DENV flaviviruses and histories of vaccination against non-DENV flaviviruses in evaluating DENV vaccine safety and efficacy

    SHIP-Deficient Dendritic Cells, Unlike Wild Type Dendritic Cells, Suppress T Cell Proliferation via a Nitric Oxide-Independent Mechanism

    Get PDF
    Dendritic cells (DCs) not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP's role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP-/- GM-CSF-derived DCs (GM-DCs) were far less capable than wild type (WT, SHIP+/+) GM-DCs at activating T cell proliferation. This was most likely because SHIP-/- GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated.In this study we examined SHIP's role in DC-induced T cell suppression by co-culturing WT and SHIP-/- murine DCs, derived under different conditions or isolated from spleens, with αCD3+ αCD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and -/- splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and -/- GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO) production while SHIP-/- GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP-/- DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs.These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s) employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented
    corecore