55 research outputs found

    Rethinking drug design in the artificial intelligence era

    Get PDF
    Artificial intelligence (AI) tools are increasingly being applied in drug discovery. While some protagonists point to vast opportunities potentially offered by such tools, others remain sceptical, waiting for a clear impact to be shown in drug discovery projects. The reality is probably somewhere in-between these extremes, yet it is clear that AI is providing new challenges not only for the scientists involved but also for the biopharma industry and its established processes for discovering and developing new medicines. This article presents the views of a diverse group of international experts on the 'grand challenges' in small-molecule drug discovery with AI and the approaches to address them

    Bat conservation and zoonotic disease risk: a research agenda to prevent misguided persecution in the aftermath of COVID-19

    Get PDF
    Letter to the EditorCOVID-19 has spread around the globe, with massive impacts on global human health, national economies and conservation activities. In the timely editorial about conservation in the maelstrom of COVID-19, Evans et al. (2020) urged the conservation community to collaborate with other relevant sectors of society in the search for solutions to the challenges posed by the current pandemic, as well as future zoonotic outbreaks. Considering the association of COVID 19 with bats (Zhou et al., 2020), bat conservationists will undoubtedly be key actors in this dialogue, and thus an action plan on how best to adjust bat conservation to this new reality, alongside a transdisciplinary research agenda, are clear prioritiesinfo:eu-repo/semantics/publishedVersio

    The low-virulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNα, TNFα and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60

    Get PDF
    The impact of infection by the low-virulent ASFV/NH/P68 (NHV) and the highly virulent ASFV/L60 (L60) isolates on porcine macrophages was assessed through the quantification of IFNα, TNFα, IL12p40, TGFÎČ and ASFV genes by real-time PCR at 2, 4 and 6 h post-infection. Increased IFNα, TNFα and IL12p40 expression was found in infection with NHV, in which expression of TGFÎČ was lower than in infection with L60. Principal component analysis showed a positive interaction of cytokines involved in cellular immune mechanisms, namely IFNα and IL12p40 in the NHV infection. Quantification by ELISA confirmed higher production of IFNα, TNFα and IL12p40 in the NHV-infected macrophages. Overall, our studies reinforce and clarify the effect of the NHV infection by targeting cellular and cellular-based immune responses relevant for pig survival against ASFV infection

    Henipavirus RNA in African Bats

    Get PDF
    BACKGROUND: Henipaviruses (Hendra and Nipah virus) are highly pathogenic members of the family Paramyxoviridae. Fruit-eating bats of the Pteropus genus have been suggested as their natural reservoir. Human Henipavirus infections have been reported in a region extending from Australia via Malaysia into Bangladesh, compatible with the geographic range of Pteropus. These bats do not occur in continental Africa, but a whole range of other fruit bats is encountered. One of the most abundant is Eidolon helvum, the African Straw-coloured fruit bat. METHODOLOGY/PRINCIPAL FINDINGS: Feces from E. helvum roosting in an urban setting in Kumasi/Ghana were tested for Henipavirus RNA. Sequences of three novel viruses in phylogenetic relationship to known Henipaviruses were detected. Virus RNA concentrations in feces were low. CONCLUSIONS/SIGNIFICANCE: The finding of novel putative Henipaviruses outside Australia and Asia contributes a significant extension of the region of potential endemicity of one of the most pathogenic virus genera known in humans

    Sensitivity of Anopheles gambiae population dynamics to meteo-hydrological variability: a mechanistic approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mechanistic models play an important role in many biological disciplines, and they can effectively contribute to evaluate the spatial-temporal evolution of mosquito populations, in the light of the increasing knowledge of the crucial driving role on vector dynamics played by meteo-climatic features as well as other physical-biological characteristics of the landscape.</p> <p>Methods</p> <p>In malaria eco-epidemiology landscape components (atmosphere, water bodies, land use) interact with the epidemiological system (interacting populations of vector, human, and parasite). In the background of the eco-epidemiological approach, a mosquito population model is here proposed to evaluate the sensitivity of <it>An. gambiae </it>s.s. population to some peculiar thermal-pluviometric scenarios. The scenarios are obtained perturbing meteorological time series data referred to four Kenyan sites (Nairobi, Nyabondo, Kibwesi, and Malindi) representing four different eco-epidemiological settings.</p> <p>Results</p> <p>Simulations highlight a strong dependence of mosquito population abundance on temperature variation with well-defined site-specific patterns. The upper extreme of thermal perturbation interval (+ 3°C) gives rise to an increase in adult population abundance at Nairobi (+111%) and Nyabondo (+61%), and a decrease at Kibwezi (-2%) and Malindi (-36%). At the lower extreme perturbation (-3°C) is observed a reduction in both immature and adult mosquito population in three sites (Nairobi -74%, Nyabondo -66%, Kibwezi -39%), and an increase in Malindi (+11%). A coherent non-linear pattern of population variation emerges. The maximum rate of variation is +30% population abundance for +1°C of temperature change, but also almost null and negative values are obtained. Mosquitoes are less sensitive to rainfall and both adults and immature populations display a positive quasi-linear response pattern to rainfall variation.</p> <p>Conclusions</p> <p>The non-linear temperature-dependent response is in agreement with the non-linear patterns of temperature-response of the basic bio-demographic processes. This non-linearity makes the hypothesized biological amplification of temperature effects valid only for a limited range of temperatures. As a consequence, no simple extrapolations can be done linking temperature rise with increase in mosquito distribution and abundance, and projections of <it>An. gambiae </it>s.s. populations should be produced only in the light of the local meteo-climatic features as well as other physical and biological characteristics of the landscape.</p

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders
    • 

    corecore