80 research outputs found

    Efferent Control of the Electrical and Mechanical Properties of Hair Cells in the Bullfrog's Sacculus

    Get PDF
    Background: Hair cells in the auditory, vestibular, and lateral-line systems respond to mechanical stimulation and transmit information to afferent nerve fibers. The sensitivity of mechanoelectrical transduction is modulated by the efferent pathway, whose activity usually reduces the responsiveness of hair cells. The basis of this effect remains unknown. Methodology and Principal Findings: We employed immunocytological, electrophysiological, and micromechanical approaches to characterize the anatomy of efferent innervation and the effect of efferent activity on the electrical and mechanical properties of hair cells in the bullfrog’s sacculus. We found that efferent fibers form extensive synaptic terminals on all macular and extramacular hair cells. Macular hair cells expressing the Ca 2+-buffering protein calretinin contain half as many synaptic ribbons and are innervated by twice as many efferent terminals as calretinin-negative hair cells. Efferent activity elicits inhibitory postsynaptic potentials in hair cells and thus inhibits their electrical resonance. In hair cells that exhibit spiking activity, efferent stimulation suppresses the generation of action potentials. Finally, efferent activity triggers a displacement of the hair bundle’s resting position. Conclusions and Significance: The hair cells of the bullfrog’s sacculus receive a rich efferent innervation with the heaviest projection to calretinin-containing cells. Stimulation of efferent axons desensitizes the hair cells and suppresses their spiking activity. Although efferent activation influences mechanoelectrical transduction, the mechanical effects on hair bundles ar

    Accurate reconstruction of insertion-deletion histories by statistical phylogenetics

    Get PDF
    The Multiple Sequence Alignment (MSA) is a computational abstraction that represents a partial summary either of indel history, or of structural similarity. Taking the former view (indel history), it is possible to use formal automata theory to generalize the phylogenetic likelihood framework for finite substitution models (Dayhoff's probability matrices and Felsenstein's pruning algorithm) to arbitrary-length sequences. In this paper, we report results of a simulation-based benchmark of several methods for reconstruction of indel history. The methods tested include a relatively new algorithm for statistical marginalization of MSAs that sums over a stochastically-sampled ensemble of the most probable evolutionary histories. For mammalian evolutionary parameters on several different trees, the single most likely history sampled by our algorithm appears less biased than histories reconstructed by other MSA methods. The algorithm can also be used for alignment-free inference, where the MSA is explicitly summed out of the analysis. As an illustration of our method, we discuss reconstruction of the evolutionary histories of human protein-coding genes.Comment: 28 pages, 15 figures. arXiv admin note: text overlap with arXiv:1103.434

    Structural Basis of Gate-DNA Breakage and Resealing by Type II Topoisomerases

    Get PDF
    Type II DNA topoisomerases are ubiquitous enzymes with essential functions in DNA replication, recombination and transcription. They change DNA topology by forming a transient covalent cleavage complex with a gate-DNA duplex that allows transport of a second duplex though the gate. Despite its biological importance and targeting by anticancer and antibacterial drugs, cleavage complex formation and reversal is not understood for any type II enzyme. To address the mechanism, we have used X-ray crystallography to study sequential states in the formation and reversal of a DNA cleavage complex by topoisomerase IV from Streptococcus pneumoniae, the bacterial type II enzyme involved in chromosome segregation. A high resolution structure of the complex captured by a novel antibacterial dione reveals two drug molecules intercalated at a cleaved B-form DNA gate and anchored by drug-specific protein contacts. Dione release generated drug-free cleaved and resealed DNA complexes in which the DNA gate instead adopts an unusual A/B-form helical conformation with a Mg2+ ion repositioned to coordinate each scissile phosphodiester group and promote reversible cleavage by active-site tyrosines. These structures, the first for putative reaction intermediates of a type II topoisomerase, suggest how a type II enzyme reseals DNA during its normal reaction cycle and illuminate aspects of drug arrest important for the development of new topoisomerase-targeting therapeutics

    Survival in Southern European patients waitlisted for kidney transplant after graft failure: A competing risk analysis

    Full text link
    Background Whether patients waitlisted for a second transplant after failure of a previous kidney graft have higher mortality than transplant-nĂ€ive waitlisted patients is uncertain. Methods We assessed the relationship between a failed transplant and mortality in 3851 adult KT candidates, listed between 1984–2012, using a competing risk analysis in the total population and in a propensity score-matched cohort. Mortality was also modeled by inverse probability weighting (IPTW) competing risk regression. Results At waitlist entry 225 (5.8%) patients had experienced transplant failure. All-cause mortality was higher in the post-graft failure group (16% vs. 11%; P = 0.033). Most deaths occurred within three years after listing. Cardiovascular disease was the leading cause of death (25.3%), followed by infections (19.3%). Multivariate competing risk regression showed that prior transplant failure was associated with a 1.5-fold increased risk of mortality (95% confidence interval [CI], 1.01–2.2). After propensity score matching (1:5), the competing risk regression model revealed a subhazard ratio (SHR) of 1.6 (95% CI, 1.01–2.5). A similar mortality risk was observed after the IPTW analysis (SHR, 1.7; 95% CI, 1.1–2.6). Conclusions Previous transplant failure is associated with increased mortality among KT candidates after relisting. This information is important in daily clinical practice when assessing relisted patients for a retransplant.This study was supported in part by the Spanish Ministry of Economy and Competitiveness (MINECO) (grant ICI14/00016) from the Instituto de Salud Carlos III co-funded by the Fondo Europeo de Desarrollo Regional±FEDER, RETICS (REDINREN RD16/0009/0006, RD16/0009/0031

    First-Step Mutations for Adaptation at Elevated Temperature Increase Capsid Stability in a Virus

    Get PDF
    The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing

    A probabilistic framework for partial intrinsic symmetries in geometric data

    No full text
    In this paper, we present a novel algorithm for partial intrinsic symmetry detection in 3D geometry. Unlike previous work, our algorithm is based on a conceptually simple and straightforward probabilistic formulation of partial shape matching: based on a Markov random field model, we obtain a probability distribution over all possible intrinsic matches of a shape to itself, which reveals the symmetry structure of the object. Rather than examining this exponentially sized distribution directly, which is infeasible, we approximate marginals of this distribution using sumproduct loopy belief propagation and show how the symmetry information can subsequently be extracted from this condensed representation. Using a parallel implementation on graphics hardware, we are able to extract symmetries of deformable shapes in general poses efficiently. We apply our algorithm on several standard 3D models, demonstrating that a concise probabilistic model yields a practical and general symmetry detection algorithm. 1

    Effects of sulforaphane on the oxidative response, apoptosis, and the transcriptional profile of human stomach mucosa cells in vitro

    No full text
    Oxidative stress is a critical factor in the pathogenesis of several gastrointestinal diseases. Sulforaphane (SFN), a bioactive compound found in cruciferous vegetables, activates the redox-sensitive nuclear erythroid 2-related factor 2 (NRF2). In addition to its protective role, SFN exerts cytotoxic effects on cancer cells. However, there is a lack of information concerning the toxicity of SFN in normal cells. We investigated the effects of SFN on cell viability, antioxidant defenses, and gene expression in human stomach mucosa cells (MNP01). SFN reduced ROS formation and protected the cells against induced oxidative stress but high concentrations increased apoptosis. An intermediate SFN concentration (8 ÎŒM) was chosen for RNA sequencing studies. We observed upregulation of genes of the NRF2 (antioxidant) pathway, the DNA damage response, and apoptosis signaling; whereas SFN downregulated cell cycle and DNA repair pathway genes. SFN may be cytoprotective at low concentrations and cytotoxic at high concentrations

    Transcriptome and DNA methylation changes modulated by sulforaphane induce cell cycle arrest, apoptosis, DNA damage, and suppression of proliferation in human liver cancer cells

    No full text
    Abnormal epigenetic alterations are one of the keystones of cancer development. Epigenetic targeting drugs have become a promising and effective cancer therapy strategy. However, due to the high toxicity and unclear mechanisms of action of these drugs, natural compounds that cause epigenetic modulation have also been studied. Sulforaphane (SFN) is a promising bioactive compound for epigenetic targeting therapy. In this study, we investigate the effects of SFN on gene expression and DNA methylation in human hepatocellular carcinoma cells (HepG2). Using high throughput technologies in combination with cell-based assays, we find SFN is a potent anticancer agent, as it induces DNA damage, mitotic spindle abnormalities followed by apoptosis and proliferation inhibition in HepG2 cells. Our results show the upregulation of DNA damage response and cell cycle checkpoint genes. Also, we find the downregulation of cellular pathways frequently overexpressed in human cancer. As expected, SFN exerts epigenetic modulation effects by inhibiting histone deacetylases (HDACs). SFN might affect the activity of oncogenic transcription factors through methylation of its binding sites motifs. Our findings offer insights into SFN chemopreventive molecular effects in HepG2 cells and highlight SFN as a valuable natural approach to cancer therapy for future investigatio

    Introducing the Cancer Research UK Advanced Radiotherapy Technologies Network (ART-NET).

    Get PDF
    We live in a golden age for the development of innovative radiotherapy technologies. Three major new treatment platforms are currently at various stages of being implemented globally: stereotactic ablative radiotherapy (SABR)[1]; MR-guided radiotherapy (MR-Linac)[2]; and proton beam therapy (PBT)[3]. Such technologies offer huge opportunities for clinical benefit, but also present significant challenges for development, assessment and rational implementation within an increasingly financially constrained National Health Service (NHS). However, the apparent restrictions imposed by the structure of the NHS can also be viewed as a benefit for developing and proving the value of new radiotherapy technologies. In large part, this is due to the need to provide robust evidence to support the implementation of new technological developments before they can become widely available nationally. For example, the recent development, assessment and widespread adoption of intensity-modulated radiotherapy (IMRT) in the UK was driven by a programme of preclinical and clinical studies that were led initially by a small number of academic centres, but which progressively involved and finally included the majority of radiotherapy units in the UK[4-7]. A by-product of this research is that the UK has provided the international community with the best evidence-base for the use of IMRT in a variety of indications (e.g. prostate, breast and head and neck cancers)
    • 

    corecore