5 research outputs found

    Gerasimov-Drell-Hearn Sum Rule and the Discrepancy between the New CLAS and SAPHIR Data

    Full text link
    Contribution of the K^+\Lambda channel to the Gerasimov-Drell-Hearn (GDH) sum rule has been calculated by using the models that fit the recent SAPHIR or CLAS differential cross section data. It is shown that the two data sets yield quite different contributions. Contribution of this channel to the forward spin polarizability of the proton has been also calculated. It is also shown that the inclusion of the recent CLAS C_x and C_z data in the fitting data base does not significantly change the result of the present calculation. Results of the fit, however, reveal the role of the S_{11}(1650), P_{11}(1710), P_{13}(1720), and P_{13}(1900) resonances for the description of the C_x and C_z data. A brief discussion on the importance of these resonances is given. Measurements of the polarized total cross section \sigma_{TT'} by the CLAS, LEPS, and MAMI collaborations are expected to verify this finding.Comment: 15 pages, 8 figure

    Perspectives on heterococcolith geochemical proxies based on high-resolution X-ray fluorescence mapping

    No full text
    International audienceHeterococcoliths are micron-scale calcite platelets produced by coccolithophores. They have been the most abundant and continuous fossil record over the last 215 million years (Myr), offering great potential for geochemical studies, although the heterococcolith fossil record remains underutilised in this domain. We have mapped heterococcoliths' composition using X-ray fluorescence (XRF) with a 100-nm resolution beam to decipher element distributions in heterococcoliths and to investigate the potential development of geochemical proxies for palaeoceanography. The study presents two Middle Jurassic Watznaueria britannica heterococcoliths from Cabo Mondego, Portugal. XRF analysis was performed with a 17 keV incident energy beam at the European Synchrotron Radiation Facility ID22NI beamline to study elements from Sr down to S. Ca, Sr and Mn are distributed following the heterococcolith crystalline arrangement. Cl, Br and S display an homogeneous distribution, whereas K, Fe, Cu, Zn and Rb are concentrated at the edges and in the central area of the heterococcoliths. Distributions of K, Fe, Ti, Fe, Cu, Zn, Rb and to a lesser extent V and Cr are highly influenced by clay contamination and peripheral diagenetic overgrowth. Mn is related to diagenetic Mn-rich CaCO3 overgrowth on top of or between heterococcoliths shields. Cl and Br are likely to be present in heterococcoliths inside interstitial nano-domains. We assume that the cytoplasm [Cl−] and [Br−] are mediated and constant during heterococcolithogenesis. Assuming a linear correlation between cytoplasm [Cl−] and sea water [Cl−], heterococcolith Cl may have potential as a salinity proxy. As S is incorporated into heterococcoliths by sulphated polysaccharides, our study suggests a role for such polysaccharides in heterococcolithogenesis for at least 170 Myr. The low Sr/Ca in the W. britannica specimens studied here may either highlight an unusual cellular physiology of Mesozoic coccolithophores or result from low growth rates in oligotrophic environments
    corecore