837 research outputs found

    Root Diseases and Blister Rust Associated with Bark Beetles (Coleoptera: Scolytidae) in Western White Pine in Idaho

    Get PDF
    Root systems of western white pine, Pinus montieola Douglas, were excavated with explosives and examined for pathogens. Data were also recorded on portions of the crown killed by blister rust caused by Cronartium ribieola Fisch. Statistical tests revealed a significant association between the bark beetles Dendroetonus ponderosae Hopkins and Pityogenes fossifrons (LeConte), and the root pathogen Armillariella mellea. (Vah!. ex Fr.) Karst and between beetles and all root diseases. Ninety-two percent of the trees attacked by bark beetles had root diseases, and 97% had either root diseases or blister rust. A discriminant analysis correctly classified 88% of the sample trees into two categories, trees infested with D. ponderosae or trees not infested with D. ponderosae, using the variables age (stump), diameter at 1.3 m in height, and percentage of the primary roots infected with pathogens. Major pathogenic organisms isolated from the roots included A. mellea, Phaeolus sehweinitzii (Fr.) Pat., Resinicium bieolor (Fr.) Parm., Vertieicladiella spp., and a Europhium strain. A hypothetical sequence of host tree invasion by blister rust, followed by infection by root diseases, and finally attacks by bark beetles, is postulated

    Defect configurations and dynamical behavior in a Gay-Berne nematic emulsion

    Full text link
    To model a nematic emulsion consisting of a surfactant-coated water droplet dispersed in a nematic host, we performed a molecular dynamics simulation of a droplet immersed in a system of 2048 Gay-Berne ellipsoids in a nematic phase. Strong radial anchoring at the surface of the droplet induced a Saturn ring defect configuration, consistent with theoretical predictions for very small droplets. A surface ring configuration was observed for lower radial anchoring strengths, and a pair of point defects was found near the poles of the droplet for tangential anchoring. We also simulated the falling ball experiment and measured the drag force anisotropy, in the presence of strong radial anchoring as well as zero anchoring strength.Comment: 17 pages, 15 figure

    Comparison of site-specific and conventional uniform irrigation management for potatoes

    Get PDF
    Site-Specific Irrigation Management (SSIM) can be defined as irrigation management (depth, timing) based on crop need to defined sub-areas of a field referred to as management zones. Implementation of SSIM will require additional irrigation system hardware, labor, and information on soil and/or plant water status in each management zone. Costs associated with these additional requirements will need to be offset by increased receipts from improved crop yield and quality in order for the technology to be adopted by producers. The potential for SSIM to increase crop yield, quality, and economic return has not been evaluated in field studies. Crops such as potatoes, for which yield and quality are highly sensitive to soil water availability, are most likely to show an economic benefit from site-specific irrigation management. A two-year field study was conducted to evaluate the potential for SSIM to increase yield and quality of potatoes relative to Conventional Uniform Irrigation Management (CUIM). Near real-time soil water content was used to schedule irrigations under both irrigation management treatments. Field average water application was nearly the same for the irrigation management treatments, 503 mm (19.8 in.) in 2001 and 445 mm (17.5 in.) in 2002. In both study years, tuber yield distributions trended 4% greater under site-specific irrigation management but were not significantly different (p < 0.05). Total tuber yield per unit of water applied from irrigation and precipitation was 4% greater in 2001 and 6% greater in 2002 under SSIM. Based on a local tuber quality adjusted potato processing contract price structure, the trend in gross income averaged across the field site was 159/ha( 159/ha (65/acre) greater with SSIM. This increase in gross income is likely about half the actual cost of commercial site-specific irrigation technology. The required 3- to 5-year crop rotation for potato disease management means that the site-specific irrigation system needs to be mobile or an economic benefit must also be realized from other crops in the rotation. The economic benefit of SSIM needs to be increased or realized for other crops in the rotation for it to be an economically viable technology in potato production systems in Idaho

    Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K

    Full text link
    Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of the quasi-two dimensional charge transfer salt β\beta"-(ET)4_4(H3_3O)[Fe(C2_2O4_4)3_3]\cdotC6_6H4_4Cl2_2 have been investigated in pulsed magnetic fields up to 54 T. The data reveal three basic frequencies Fa_a, Fb_b and Fba_{b - a}, which can be interpreted on the basis of three compensated closed orbits at low temperature. However a very weak thermal damping of the Fourier component Fb_b, with the highest amplitude, is evidenced for SdH spectra above about 6 K. As a result, magnetoresistance oscillations are observed at temperatures higher than 30 K. This feature, which is not observed for dHvA oscillations, is in line with quantum interference, pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009

    Pore and Grain Geometry Analysis of Sandstone Reservoir Rocks from a Well of a Northern German Basin

    Get PDF
    Pore space and grain geometry are important physical properties distinguished in reservoir rocks, particularly in sandstones, due to their influence on oil and gas reservoir quality. Therefore, a detailed study of pore space morphology and grain surface roughness in sandstone reservoir rocks is a key element in petroleum geology. It is eminent in understanding of the adhesion of hydrocarbons in rocks and coupled fluid flows in pores and along grain surfaces. In this work, sandstone samples taken from a well of a Northern German basin deposit have been analysed by thin section petrography, Confocal Raman Microscopy and Confocal Laser Scanning Microscopy (CLSM). The roughness of grain surfaces is analysed and the pore geometries of sandstone rocks are verified. Roughness and pore geometry have a significant impact on the wetting behaviour and adhesion properties of hydrocarbon fluids, water or carbon dioxide (CO2) to the pore walls. The results show the relationship between the composition of sandstones and their pore geometry and the grain surface roughness. The geometry of the pore morphology and the grain surface shows a range from very rough to flat smooth crystal facets, from few hundreds to sub-micron, depending on the scale of observation. The 50x and 100x magnifications were applied in this study. The findings offer a detailed insight into the relationship of pore space morphology and the grain surface roughness. The results add important parameters to the calculation models for hydrocarbon exploitation and to enhancement of the amount of oil recovery

    Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    Full text link
    High pressure structural distortions of the hexagonal close packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane wave (LAPW) method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments.Comment: 9 pages, 6 figures, Phys. Rev. B (in press

    Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host

    Full text link
    Combining molecular dynamics and Monte Carlo simulation we study defect structures around an elongated colloidal particle embedded in a nematic liquid crystal host. By studying nematic ordering near the particle and the disclination core region we are able to examine the defect core structure and the difference between two simulation techniques. In addition, we also study the torque on a particle tilted with respect to the director, and modification of this torque when the particle is close to the cell wall

    Effective interactions of colloids on nematic films

    Get PDF
    The elastic and capillary interactions between a pair of colloidal particles trapped on top of a nematic film are studied theoretically for large separations dd. The elastic interaction is repulsive and of quadrupolar type, varying as d5d^{-5}. For macroscopically thick films, the capillary interaction is likewise repulsive and proportional to d5d^{-5} as a consequence of mechanical isolation of the system comprised of the colloids and the interface. A finite film thickness introduces a nonvanishing force on the system (exerted by the substrate supporting the film) leading to logarithmically varying capillary attractions. However, their strength turns out to be too small to be of importance for the recently observed pattern formation of colloidal droplets on nematic films.Comment: 13 pages, accepted by EPJ

    Advances in aquatic insect systematics and biodiversity in the Neotropics: introduction

    Get PDF
    The Neotropical Region or Neotropics, contains vast expanses of rain forest and river systems representing some of the most biologically diverse ecosystems on Earth, but much of its resident biota remains undescribed and undocumented, and some of it is at risk of extirpation and extinction. Anthropogenic disturbances, especially deforestation, urbanization, and climate change, threaten the integrity of the Neotropics and its biodiversity. In the Neotropics, freshwater habitats are particularly susceptible to environmental stressors and freshwater species throughout the Neotropics have experienced marked declines greater than those of other groups when compared to marine and terrestrial systems. Advances in taxonomic descriptions, preparation of keys, and faunal assessments will aid future studies as well as conservation efforts
    corecore